対象専攻・年次・区分 共通 M1 選択

授 業 科 目 名 数值解析論

英文名 Advanced Numerical Analysis 科目区分・コード 専門基礎 940060

教 員 名 吉田 秀典

学期 曜日 校時 1学期 木 4校時

単 位 数 2単位

1.授業の目標

工学・理学分野における数値的方法であるシミュレーション(数値実験)の基本手法とその数理を、現代の工学・理学分野で現れる基本的現象を例として習得する。特に本講では、数値解析法の一つである有限要素法に着目し、その概説と実際問題への応用について説明を行う。

2.授業の概要

数値解析あるいはシミュレーションには、その基礎として「コンピュータのための数値計算法」、「数値計算に関する数学的理論」が重要であるが、具体的には、工学的・理学的現象を理解し、かつ、それを数学的に記述することにより、初めて現象の数値解析的表現が可能となる。本講義では、まず、工学的・理学的現象を数学的に記述するための基礎数学を説明し、その後に、工学・理学分野でそのシミュレーションのための考え方、数理的考察、応用展開について講義する。また、レポート課題としてプログラム作成を通じて、現象解明を目的とした数値解析 / シミュレーションの実際を体得する。

3.授業の方法

板書を中心に講義を進め、適宜、課題を課す。課題は計算機や計算言語を使用する。詳細は講義にて説明を行う。尚、講義言語は英語である。

4.成績の評価

成績は課題演習(レポート)と出席の評点を総合して判断する。英語による課題演習を課し、それを基に評価を行ない、期末試験は課さない。 なお、課題は全て提出を原則とし、課題の提出を怠った場合、単位を認めない。

5.受講上の注意

原則として演習レポートを提出しなかった受講生には単位を与えない。簡単な力学(高校で習う物理のニュートン力学程度で構わない)、および学部における微分・積分、線形代数、応用数学 、応用数学 などを履修していることが好ましい。

授業計画

週	授業内容	理解目標	自己学習課題
第1週	Introduction	Understand the merits of analysis method	Why do we need analysis method?
第2週	Definition of Finite Element Method	Understand the necessesity and merits of finite element method	What is finite element method?
第3週	Differential Equation and Weak Form	Derive differential equation and weak form	Differential Equation and Weak Form
第4週	Variational Principal	Understand the variational principal	Variational Principal
第5週	Ritz-Galerkin Method 1 Approximate function	Understand an approximate function	Approximate function
第6週	Ritz-Galerkin Method 2 Galerkin Method	Understand Galerkin method in fhe field of analysis method	Galerkin Method
第7週	Ritz-Galerkin Method 3 Ritz Method	Understand Ritz method in fhe field of analysis method	Ritz Method
第8週	Finite Element Method (1-D Problem) 1 Construction of approximate function	Construct approximate function in 1-D problem	Approximate function in 1-D problem
第9週	Finite Element Method (1-D Problem) 2 Element matrix	Construct element matrix in 1-D problem	Element matrix in 1-D problem
第10週	Finite Element Method (1-D Problem) 3 Total element matrix	Derive total element matrix in 1-D problem	Total element matrix in 1-D problem
第11週	Finite Element Method (1-D Problem) 4 Example	Solve the problem in 1-D problem	Finite Element Analysis in 1-D problem
第12週	Finite Element Method (2-D Problem) 1 Construction of approximate function	Construct approximate function in 2-D problem	Approximate function in 2-D problem
第13週	Finite Element Method (2-D Problem) 2 Element matrix & total element matrix	Construct total element matrix in 2-D problem	Total element matrix in 2-D problem
第14週	Finite Element Method (2-D Problem) 3 Simple example	Solve the problem in 2-D problem	Finite Element Analysis in 2-D problem
第15週	Finite Element Method (2-D Problem) 4 Gauss's method of elimination	Gauss's method of elimination	Gauss's method of elimination

教科書:

参考書:

質問の受付: 木曜日16:20~17:50に研究室(2号館3階,2316)で受け付ける。または、電子メール(yoshida@eng.kagawa-u.ac.jp)で随時受け付ける。