科	目	名	学年	期別・授業形態・単位数	教 員 名	奥 村 幸 彦
		力学	B 2	後期・講義・2単位		1号館3階(1307)
	劫士兴				内線電話	2344
TD1					e-mail:	okumura@eng.kagawa-u.ac.jp
Ine	ermodynamics	cs		講義 90 分	× 15回	+ 自学自習
			到達	レベル: ☑ 61. 知識・記憶 ☑	62. 理解 🗆	3. 適用 □4. 分析 □5. 評価 □6. 創造

【授業概要】

以下の項目を学習する。

- 1. どのように熱エネルギーを仕事(動力)に変換するのかを理解する。
- 2. 熱エネルギーから仕事(動力)への変換効率は限界が存在することを知る。
- 3. エンジンの仕組み,発電所の仕組み,および熱効率向上の対策や工夫が理解できる。

[Course Outline] Students will:

- 1. learn how convert thermal energy to mechanical work,
- 2. learn the limitation of energy conversion based on analysis of heat engines,
- 3. understand the principle of the first law and the second law of thermodynamics, the concept of energy conversion system (engine and power plant), and how to increase the thermal efficiency.

【到達目標】

- 1. 熱力学の第一法則を説明できる。熱力学の第二法則を説明できる。
- 2. 理想気体の圧力、体積、温度の関係を、状態方程式を用いて説明できる。
- 3. 閉じた系および開いた系が外界にする仕事量をp-V線図で説明できる。
- 4. 等圧変化、等容変化、等温変化、断熱変化、ポリトロープ変化の意味を理解し、状態量、熱、仕事を計算できる。
- 5. サイクルを T-s 線図で表現できる。
- 6. カルノーサイクルの状態変化を理解し、熱効率を計算できる。
- 7. エンジンの仕組み、および熱効率向上の対策や工夫が理解できる。

【学習・教育到達目標】

(A), (C), (D), (E), (E)

【キーワード】

熱力学の第1法則,熱力学の第2法則,エントロピー, エンタルピー,ガスサイクル,ランキンサイクル

first law of thermodynamics, the second law of thermodynamics, enthalpy, entropy, Gas cycle, Rankine-Clausius cycle

【授業時間】

2 時間(90分)×15 週=30 時間(1350分)

【授業方法】

授業前半は板書を中心とした講義形式で説明していく。その中で、皆さんに質問するので、はっきりと自分の意見を述べて欲しい。授業の後半では講義内容の理解をより深めるために、演習問題を毎回与えます。

【履修推奨科目】

流体力学 I, Ⅱ

【履修上の注意】

授業での学習と授業外での自己学習で成り立つものである。毎授業には電卓を持参すること。

オフィスアワーは水曜日の $16:50\sim17:50$ に研究室(1307室) にて受け付けます.質問は随時に E-mail (okumura@eng.kagawa-u.ac.jp) により送ってください.回答します.

【定期試験の実施方法】

期末試験を行う。持ち込みは電卓と筆記用具を認める。

【成績の評価方法・評価基準】

試験 (70%) およびリポート・討議 (30%) を考慮して総 合的に評価します。

【学習方法】

事前にシラバスを見て該当箇所を読み,疑問点を明確にしておくことが望ましい。授業ではわからない箇所を躊躇せずに質問してほしい(対話を重視しながら授業を進めます)。毎回の授業の前後には,予習・復習として自己学習を行うこと。

【教材等】

参考書:「工業熱力学」(森北出版),平田哲夫,田中誠,武居昌宏,2016,ISBN:978-4-627-67341-0,

【参考書・参照 URL 等】

参考書:日本機械学会 JSME テキストシリーズ 熱力学 丸善(株)

URL: http://web.maizuru-ct.ac.jp/control/okumura/index0.html

【 +亚	ᄴ	=1	画	٦
1 45	未	āΤ	ш	1

内 容	教科書参照ページ
シラバス内容の説明、エネルギー枯渇の問題とエネルギー高効率利用の話〔演習課題〕配付資料第1練習問題(1.1~1.9)	<u>資料</u>
熱とは何か? (様々なエネルギーの質の比較) 〔演習課題〕配付資料第2練習問題 (2.1~2.5)	8~11
物理量としての熱力学的変数(比熱、熱量、圧力、比容積)、平衡状態 〔演習課題〕配付資料第 2 練習問題(2.1~2.5)	16~20, 23~27
完全ガスの等温変化、断熱変化の復習、絶対仕事と工業仕事の復習	37~38
熱力学の第一法則とエンタルピー (熱と仕事の関係、内部エネルギー、エンタルピー)	36~37
熱力学の第二法則とエントロピ (可逆変化と不可逆変化の違い) 〔演習課題〕配付資料第6練習問題 (6.1~6.4)	37
実在ガスと理想ガス (=完全ガス) の違い〔演習課題〕配付資料第 6 練習問題 (6.5~6.7)	36
微視的メカニズム:分子間相互作用の存在、ボイル・シャルルの法則 〔演習課題〕配付資料第6練習問題(6.8~6.10)	1~38
絶対仕事と工業仕事〔演習課題〕配付資料第6練習問題(6.11~6.16)	28~31
完全ガスの等圧変化、完全ガスの等容変化	11~13
完全ガスの等温変化、完全ガスの断熱変化	41~43
ポリトロープ変化 (実在ガスに近づける)	11~13
ガスによるエネルギー変換(ガソリンエンジン、メカニズムと設計指針) 〔演習課題〕配付資料第6練習問題(6.5~6.7)	41~43
ガスによるエネルギー変換(ディーゼルエンジン、メカニズムと設計指針) 〔演習課題〕配付資料第6練習問題(6.8~6.10)	11~13
ガスによるエネルギー変換(ジェットエンジン,ガスタービンエンジン) 〔演習課題〕配付資料第6練習問題(6.11~6.16)	41~43
★ 定期試験	
達成度確認	
	シラバス内容の説明、エネルギー枯渇の問題とエネルギー高効率利用の話 (演習課題)配付資料第 1 練習問題 (1.1~1.9) 熱とは何か? (様々なエネルギーの質の比較) (演習課題)配付資料第 2 練習問題 (2.1~2.5) 物理量としての熱力学的変数 (比熱、熱量、圧力、比容積)、平衡状態 (演習課題)配付資料第 2 練習問題 (2.1~2.5) 完全ガスの等温変化、断熱変化の復習,絶対仕事と工業仕事の復習 熱力学の第一法則とエクタルピー (熱と仕事の関係、内部エネルキ゚ー、エクタルピー) 熱力学の第二法則とエントロピ (可逆変化と不可逆変化の違い) (演習課題)配付資料第 6 練習問題 (6.1~6.4) 実在ガスと理想ガス (=完全ガス)の違い [演習課題]配付資料第 6 練習問題 (6.5~6.7) 微視的メカニズム:分子問相互作用の存在、ボイル・シャルルの法則 [演習課題]配付資料第 6 練習問題 (6.8~6.10) 絶対仕事と工業仕事 [演習課題]配付資料第 6 練習問題 (6.11~6.16) 完全ガスの等圧変化、完全ガスの断熱変化 ポリトロープ変化 (実在ガスに近づける) ガスによるエネルギー変換 (ガソリンエンジン,メカニズムと設計指針) [演習課題]配付資料第 6 練習問題 (6.5~6.7) ガスによるエネルギー変換 (ディーゼルエンジン,メカニズムと設計指針) [演習課題]配付資料第 6 練習問題 (6.8~6.10)

【学生さんへのメッセージ】

熱力学を学ぶ意義は2つある。1つめは自然現象の理解を深めるのに役立つ。もし、これから学習する内部エネルギーやエントロピーの考え方がなかったら、エネルギーは曖昧な概念でしかなかったと思う。2つめはその実用性である。熱力学は熱から取り出しうるタービンの回転仕事や電気などの最大値を明確に示してくれ、どのように熱エネルギーを利用するべきか示唆してくれるのである。