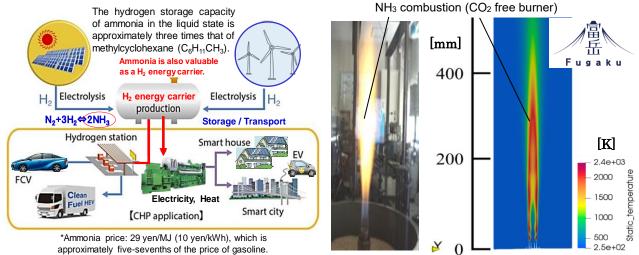
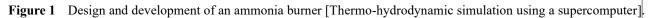
Development of New Energy Technology for Improving the Environment

Yukihiko Okumura. Professor, Faculty of Engineering and Design, Kagawa UniversityOkumura.yukihiko[at]kagawa-u.ac.jphttps://www.eng.kagawa-u.ac.jp/~okumura/index0.htmlPlease replace above [at] to @.

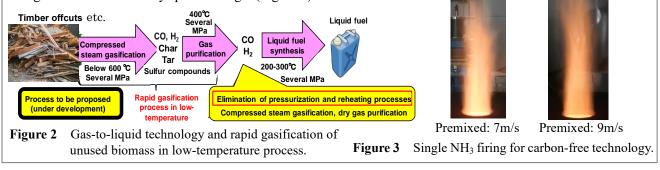



Recently, global warming caused by carbon dioxide (CO₂) emissions have become more evident. To reduce CO₂ accumulation in the atmosphere, saving energy, reduced hydrocarbon use, carbon-free energy, and effective use of renewable resources, such as biomass (i.e., scrap wood etc.), must be studied. Our laboratory has diligently developed CO₂-free burner (Figure 1), technology to use wastes effectively, technology to use biomass not suitable for food as fuel (Figure 2), CO₂ immobilization technology (CCS), and single NH₃ firing for carbon-free technology (Figure 3).

Keywords: Advanced combustion technology, Thermal-fluid engineering, Heat and mass transfer

(1) <u>Development of combustion technology to eliminate CO₂ emissions (design of a burner to simultaneously</u> <u>achieve high intensity combustion and NOx reduction</u>

Ammonia is considered ideal combustion fuel that does not emit greenhouse gases, such as CO₂. However, the burning velocity of ammonia is below 0.06 m/s, which is much lower than that of conventional hydrocarbon fuels (oil-based fuels), making it difficult to achieve stable combustion of ammonia. If ammonia is forcibly combusted, a large amount of NOx (toxic substance) will be generated. This study aims to develop a turbulent burner that can simultaneously achieve stable combustion and NOx reduction, and size of the heat exchangers can be minimized.



(2) Effective use of renewable biomass resources and development of gas engine

Applicable fields: Gas engines; Waste disposal; Energy conversion technology; Carbon-free energy

Wastes/unused biomass resources should be efficiently used. To develop next-generation gasification technology, biomass must be rapidly gasified at approximately 600 °C or lower. However, it is difficult to achieve "low temperature" and "rapid gasification" simultaneously, as they are mutually exclusive. In general gasification apparatus, biomass is gasified in the form of partial combustion at high-temperature (1000–1200 °C). Our laboratory has successfully developed rapid gasification technology, which works at approximately 700 °C using a catalyst (gasification rate constant, $K_p = 0.1/\text{min}$) and high-efficiency gas engines can be developed. In addition, single NH₃ firing have been attained by special design. (Figure 3)

