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A Method to Calculate Homoclinic Points
of a Two-Dimensional Noninvertible Map
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SUMMARY A numerical method is presented for calculating
transverse and non-transverse (or tangent) types of homoclinic
points of a two-dimensional noninvertible map having an invari-
ant set that reduces to a one-dimensional noninvertible map. To
illustrate bifurcation diagrams of homoclinic points and transi-
tions of chaotic states near the bifurcation parameter values, three
systems including coupled chaotic maps are studied.
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pled map, nonlinear problem

1. Introduction

Recently there are many investigations on coupled dis-
crete maps[1]-[3], which are considered as models of
coupled oscillators derived from physical systems. Sev-
eral phenomena observed in coupled chaotic oscillators
can be reproduced by a coupling of one-dimensional
noninvertible maps. Using a model described by dis-
crete dynamical system, we may clarify mechanisms of
generation of chaos, transition or bifurcation of chaos,
chaotic synchronization and so on.

The appearance of homoclinic structure in dynam-
ical systems is a global phenomenon and important on
the occurrence of chaotic behavior. There is, however,
no direct method to obtain homoclinic solutions for a
general noninvertible map. On the other hand, it is
possible to calculate homoclinic solutions and their bi-
furcation set for forced differential equations as well
as invertible maps[6],[7]. In this paper, we propose
a computational method to calculate homoclinic solu-
tions of a noninvertible map for a special case.

We consider a discrete map as a function of a real
parameter vector A, defined by

T\ : R* > R% (z,y) — (¢',y) (1)

where the system has an invariant set such that the re-
striction to the line pz + qy = r (»* + ¢ F 0) reduces to
a one-dimensional noninvertible map. We also suppose
that Eq. (1) has a saddle type of fixed or periodic point,
say Dy, on the line pr+ ¢y = r, and a homoclinic point
Qo exists as an intersection of a- and w-branches (or
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unstable and stable sets, respectively) of the point Dy.
Moreover we treat a special case where the w-branch is
restricted to the invariant set pr + qy = r, so the point
Qo is located on the line, although the w-branch itself
may be folded. Indeed, this situation is typically ob-
served in, e.g., a coupling of identical chaotic maps as
shown in Sect.4 and this phenomenon is related to a
transition of chaos with a symmetric property. From
the above assumption, we can obtain the point Qo us-
ing a similar computational method for invertible maps,
because it is not necessary to calculate the w-branch of
the noninvertible map.

2. Method

In this section, we show methods for calculating trans-
verse and non-transverse (or tangent) types of homo-
clinic solutions. The two situations are sketched in
Fig.1. Note that a periodic point with period k£ can
be studied by replacing T with Ty", k-th iterates of
Ty, in Eq.(1). Therefore in the following we consider
only homoclinic point of the fixed point of Ty. Similar
argument can be applied to the periodic point of T}.

2.1 Transverse Type of Homoclinic Point
We first consider a method for obtaining a transverse

type of homoclinic point (y using a local representa-
tion of a-branch. Let the point Dy be a saddle type of

@-branch

(a) (b)

Fig. 1 Schematic diagrams for (a) transverse and (b) non-trans-
verse (or tangent) types of homoclinic points.
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fixed point:
Ta(Do) — Do =0 (2)

We take an e-neighborhood Uf(e, Dg) as shown in
Fig. 1 (a), then there exists a positive integer M such
that

TM(Q_pm) =Qo, Q_um € Ule, Do) (3)

Because Qg is on the line pr + qy = r, the point Q_
satisfies

® ¢ TM(Q_y)—7=0 (4)

Hence the problem for obtaining the point Qo reduces
to a problem to find the point Q_js (€ a-branch) that
satisfies Eq. (4) and is included in the region U(e, Dy).

Now, we use the first order approximation or eigen-
vector as the local representation of a-branch in the &-
neighborhood. The condition such that the point Q_ s
is included in the a-branch is written as

Wa(Q-m—Do) =0 (5)
where the row vector W} is

W* = (1 0)(ual — DTy), or
(0 1) (ual — DT}) (6)

In the equation, DT}, indicates the derivative of T with
respect to the fixed point Do, and |u,| > 1 denotes the
characteristic multiplier.

If the a-branch intersects the w-branch or the line
pxr + qy = r at the point Qo, then Eq.(5) is indepen-
dent of Eq.(4). Therefore we can determine variables
Q_um € R? for the set of Egs.(4) and (5), using, e.g.,
Newton’s method.

2.2 Non-Transverse or Tangent Type of Homoclinic
Point ’

Then we consider a homoclinic point such that the «-
branch is tangent to the w-branch (or the line px +qy =
r) at the point Qq. This is a problem for obtaining a
bifurcation of homoclinic motion.

The calculation is done by solving homoclinic
point and an element of the parameter vector A, say
A1, simultaneously, for equations of 2nd order tangent
homoclinicity. Figure 1(b) shows a schematic diagram
for the situation. Let

¢ : R— R% s +— ¢(s) (7)

be a representation of the a-branch in Ul(e, Dy), where
$(0) = Do and ¢(sa) = Q-

We now consider the derivative of ¢ with respect
to s, that is,

¢

2 (5) = W(@ls)) ®)
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then we have a tangent vector of the a-branch at the
point Qg

d(TY o d
Y| = prlieeanFe)
= DT (Q-)Wa ©)

where W(¢(s,)) = W,, for simplicity. Hence we have a
condition for coincidence of the directions W, and the
line px + qy = r:

det (DT)]‘VI(Q_M)WQ : < "pq )) =0 (10)

where W, is a vector transposed to W7, that is,
" 0 1
Wy =W, (_1 0) (11)

where T indicates the transpose. Hence the problem is
reduced to determine variables (Do, Q_pr, A1) € R® for
the set of Egs. (2), (4), (5) and (10).

2.3 Algorithm for Obtaining Homoclinic Tangency

To obtain bifurcation diagram for homoclinic tangency,
we can achieve the following algorithm:

Step 1: Set appropriate first guess for a homoclinic
point.

Step 2: Solve transverse type of homoclinic point using
the method stated in Sect.2.1 and trace it by
varying a system parameter while checking the
tangent vector of a-branch at the homoclinic
point. If the program stops or the left hand
side of Eq.(10) approaches to zero, the values
of the set (Dg, Q_pr, A) should be used for ini-
tial values of the next step.

Step 3: Solve variables (Dg,Q_p, A1) for the non-
transverse type of homoclinic point using the
method stated in Sect.2.2.

Step 4: Change the value of another parameter A2 € A
by Ao + A, where A is an appropriate small
value, and return to Step 3.

In the case where it is necessary to obtain the first ho-
moclinic tangency’, Step 4 should be replaced by

Step 4': If there is another transverse of a-branch to the
line pz + qy = r, then return to Step 2 for the
transverse type of homoclinic point.

T The term “first’ means that there is no other homoclinic
point except the unique tangency.
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3. Definition and Notations of Bifurcations

Before showing numerical results concerning with ho-
moclinic structure, we should summarize some defini-
tions of local bifurcations of fixed and periodic points
of general discrete map, and notations for bifurcation
sets appeared in bifurcation diagrams.

The symbol D™ (resp. xI™) denotes a hyperbolic
periodic point such that D (resp. I) indicates a type
with even (resp. odd) number of characteristic multipli-
ers on the real axis (—oo, —1), k indicates the number
of characteristic multiplier outside the unit circle in the
complex plane, m indicates m-periodic point.

A local bifurcation occurs when the topological
type of a periodic point is changed by the variation of
system parameter A[9],[10]. In the proceeding section
we will observe generic codimension-one bifurcations
of tangent (or fold), period-doubling (or flip) and the
Neimark-Sacker bifurcations, and D-type of branching
as a degenerate case of the tangent bifurcation. These
bifurcations are observed when the hyperbolicity is de-
stroyed, which corresponds to the critical distribution
of the characteristic multiplier p such that p = +1 for
tangent and D-type of branching, ¢ = —1 for period-
doubling bifurcation, and x = e’® for the Neimark-
Sacker bifurcation, where j = v/—1. To calculate local
bifurcations, we use the method proposed in Ref.[11].

In bifurcation diagram, we use notations:

H[™ for homoclinic tangency of m-periodic point,
7+ for tangent bifurcation of m-periodic point,
D™ for D-type of branching of m-periodic point,

I for period-doubling bifurcation of m-periodic
point, and

N™ for the Neimark-Sacker bifurcation of m-periodic
point,

where [ denotes the number to distinguish several same
sets of ()™, if they exist. If m = 1, it will be omitted.

4. Examples

We illustrate some numerical results of calculating ho-
moclinic bifurcations showing several interesting phe-
nomena related to a transition of chaos.

4.1 A Coupled System of Chaotic Neurons

The system of our first example is a coupling of two
identical chaotic neurons[3]-[5]:

()= ()

where
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(a)

Fig. 2 Bifurcation diagrams for Eq. (12). Note that, in the fig-
ure (a), several bifurcation curves, e.g., the curve N2 observed in
the figure (b), are omitted for the simplicity.

_ 1
14 e otn

h(u)

and A = (a,w). Note that the restriction to ¢ = y
reduces to a one-dimensional system.

We obtain parameter sets of local and global bi-
furcations as shown in Fig.2. In the region shaded by
there exists a stable fixed point satisfying x = y.
By passing through the curve I; from this region, we
have ;I-type of fixed point which exists in the region
When the system parameter varies from the re-
gion with shading through the curve I3, the fol-
lowing bifurcation is observed: 11 — 2D +2 1 D?. The
region shows the parameter values at which the
2-periodic point {.D? exists. Moreover, due to the vari-
ation of the system parameters, the point ;D? meets
a D-type of branching denoted by the curve D? and
then its stability changes to 2 D-type. In the parameter
plane, we observe the intersections of both two curves
of period-doubling bifurcations, I, -I5 and Is—I, and
D-type of branchings, D? and D3, at the point satis-
fying w = 0 or without coupling. This phenomenon
is typically observed in a coupling of two identical dy-
namical systems each of which has a period-doubling
bifurcation[12]. A schematic diagram of manifolds for
the fixed and 2-periodic points is shown in Fig. 3.

Now, each of the points ;I and ;D? has an w-
branch on the line z = y, and, if only the fixed or
2-periodic saddle exists, the - and w-branches intersect
each other and form a transverse type of homoclinic
structure at every parameter point in the region shown
in Fig.2. The curve H in Fig.2 denotes the parameter
set on which a non-transverse type of homoclinic point
of the fixed point ;I appears. The curve is also schemat-
ically illustrated in Fig. 3. Phase portraits of attractors
and «a-branchs of the fixed point observed at the param-
eter points a—c in Fig.2(b) are shown in Fig. 4, where
the coordinate system is transformed by u = (z +y)/v/2
and v = (x —y)/v/2 to see the detail near the line z = y
or v = 0. In each phase portrait, the a-branch is drawn
up to a first transverse with the w-branch, and another
a-branch that is symmetric with respect to the linev =0
is omitted.
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We have an attractive invariant closed curve of the
iterations of Eq. (12) with parameter values indicated by
the point a, see Fig.4 (a). This invariant closed curve is
generated by the Neimark-Sacker bifurcation, denoted
by the curve N? in Fig. 2 (b), of a stable 2-periodic point
with property Th(z,y) = (y,z), which exists in the re-
gion with shading ZZ3. By increasing the value of the
parameter a for fixed w = 0.5, at the point b or on the

Fig. 3 Schematic diagram of fixed point manifold M and
2-periodic point manifolds M? for the intersection of two pe-
riod-doubling bifurcation sets. The projection of the bifurcation
conditions on the manifolds to the parameter plane A gives the
bifurcation diagram.
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Fig. 4 Phase portraits for Eq.(12) in the transformed coordi-
nate system. The point with symbol Do and the curve denote the
fixed point and its a-branch, respectively. The points indicate an
attractor without initial transition. Parameter values are denoted
by the points (a) a, (b) b, and (d) ¢ in Fig.2(b). The figure (c) is
for an enlargement of (b). The values of the Lyapunov exponents
appear in parentheses.
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curve H in Fig.2(b), we observe a non-transverse type
of homoclinic point as shown in Fig.4(b). The homo-
clinic point is indicated by the point @ in Fig.4(c)
showing an enlargement of Fig.4(b). When the ho-
moclinic point becomes to a transverse type, due to
more increase of the parameter a, we see that the invari-
ant closed curve changes to a chaotic attractor near the
a-branch which forms the transverse homoclinic struc-
ture as shown in Fig.4(d), occurring at the point ¢ in
Fig. 2 (b). Therefore the curve H shows a bifurcation set
for the transition between the invariant closed curve and
the chaotic attractor. The parameter region in which
the chaotic attractor exists is indicated by the shad-
ing [l in Fig.2(b). Note that the attractor shown
in Fig.4(d) is a characteristic chaos observed in the
neuron model [3]. It is an advantage of our method to
be able to obtain bifurcation parameters at which the
chaos generates.

4.2 A Coupled Quadratic Map

As the second example, we see the first homoclinic tan-
gency which is observed in the system composed by two
identical quadratic maps[12]:

T z' 2?2 —a—6(y—x) 3
A{(y’)_(1/2—04—6@6-3/)) 1
where A = {a, §). The system of Eq.(13) is reduced to
one-dimensional map when the condition = = y satis-
fies.

Figure 5 shows a bifurcation diagram for local
and global bifurcations. In the figure, the line I2
(a = 1.25) shows a period-doubling bifurcation of 2-
periodic point with property £ = y. By increasing the
value of a through 1.25, the following bifurcation oc-
curs: 11?2 — 4D? +2 D*. The bifurcated 4-periodic
point 1 D* also satisfies x = y, which exists in the re-
gions and [l]. Moreover its w-branch is on the
line z = y, and the eigenvector of the unstable charac-
teristic multiplier is (1, —1). On the curve H*, we have
a first homoclinic tangency of the - and w-branches

128

127

126

1.24—||||||||||||||
050 065 070 07s

6 ———»

Fig. 5 Bifurcation diagram for Eq. (13).
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Fig. 6 Phase portraits for Eq.(13) in the transformed coordi-
nate system. Parameter values are denoted by the points (a) a,
(b) b, (c) ¢, and (d) d. The points indicate an attractor without
initial transition. The values of the Lyapunov exponents appear
in parentheses. In the figure (c), the point with symbol Do and
the curve denote one of the periodic points and its a-branch, re-
spectively, and note that another a-branch that is symmetric with
respect to the line v = 0 is omitted. The point with symbol Qo
indicates the first homoclinic point.

of the periodic point ; D*. We have transverse type of
homoclinic points of the periodic point ; D* only in the
region shaded by [ -

Figures 6 (a)—(d) show phase portraits in the trans-
formed coordinate system (u,v) where u = (z + y)/v/2
and v = (z — y)/v2. By continuous variation of the
parameter « from the point a to the point d in Fig. 5,
we have a transition between disconnected (Fig.6 (a) or
(b)) and connected (Fig.6(d)) chaotic attractors with
respect to the line v = 0. The curve H* for first homo-
clinic tangencies separates the transition of two types of
chaotic attractors. An example of phase portrait for the
first homoclinic tangency is illustrated in Fig. 6 (c) with
chaotic attractor observed at the point ¢ in Fig.5. In
the figure, the point Qg indicates the tirst homoclinic
point of the periodic point D, after and before many
self intersections of the a-branch.

4.3 A Two-Dimensional Version of Myrberg’s Map

As the third example, we treat the system taken from
Ref.[13]:

x 2 -y —a+tex
T = 14
A{(y’> ( 2zy — 2.5ey > (a4

where A = (a,e). This system is not invariant with re-
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Fig. 7 Bifurcation diagram for Eq. (14).

Fig. 8 Schematic diagram for Fig. 7. Bifurcation diagram in
parameter plane A = (¢, &) and locations of periodic points on
the line y = 0 are schematically shown.

spect to the replacement of state variables « and y, in
comparison with the preceding two examples, and the
restriction to y = 0 reduces to the Myrberg map.

Figure 7 is for showing bifurcations of first ho-
moclinic tangencies, denoted by the thick curves with
symbols H and H™, of fixed and m-periodic points,
where m = 2,4, 8. The fixed and periodic points are ob-
served on the line y = 0 and there is a doubling process
of their period-doubling bifurcations indicated by the
thin curves I and I'™, m = 2,4,8. We see that there ex-
ist successive occurrences of the homoclinic bifurcations
together with the period-doubling bifurcations. The oc-
currence of the infinite doubling processes is conjec-
tured. We shall show a schematic diagram for the dou-
bling process of the homoclinic and period-doubling
bifurcations, see Fig.8. The points labeled by a—h are
for indicating parameters at which chaotic attractors
shown in Fig.9 are observed. The periodic points on
the line y = 0, which exist in regions separated by the
period-doubling bifurcations are also schematically il-
lustrated in the diagram. At the points g and h, we
have chaotic states restricted to the set y = 0. In Fig. 9,
phase portraits of attractors with and without homo-
clinic structures, which can be called as connected and
disconnected chaotic attractors, respectively, are shown.
The transition between the two types of chaotic attrac-
tors occurs on the curves of the first homoclinic tangen-
cies.
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Fig. 9 Phase portraits for attractors observed in Eq. (14). Each
attractor is observed at the parameter point with the same sym-
bol in Fig.8 as the figure label. Attractors with and without
homoclinic structures are shown on the left ((a), (c), (e) and (g))
and right ((b), (d), (f) and (h)), respectively. Note that, for each
figure on the right ((b), (d), (f) and (h)), another attractor that is
symmetric with respect to the line y = 0 is omitted. The values
of the Lyapunov exponents appear in parentheses.

5. Conclusion

Using the proposed method for obtaining homoclinic
tangencies, the following results were obtained:

1. We obtained bifurcation parameter set that causes
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the generation of a chaotic attractor, which is a
characteristic chaos observed in a coupling of two
identical chaotic neurons.

2. A mechanism of the transition between discon-
nected and connected chaotic attractors observed
in a coupled quadratic map was clarified.

3. A doubling process of homoclinic structures
together with period-doubling bifurcations was
found in a two-dimensional version of Myrberg’s
map.

For the third example or the system of Eq.(14),
a method for detecting the transition between discon-
nected and connected chaotic attractors was investi-
gated [ 14] using the critical curve[15],[16], which is
a method to analyze a chaotic behavior in the phase
plane. The relation between critical curves and the first
homoclinic tangency is a future interesting problem to
be considered.

Finally we should note that although we only con-
sider, in this paper, the case where the restriction to
w-branch is the line px + qy = r, it is possible to apply
to more general case such as h(z,y) = 0, where h is a
known C'*° function.
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