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Bifurcations in a Coupled Rossler System

Tetsuya YOSHINAGA', Hiroyuki KITAJIMA', and Hiroshi KAWAKAMI', Members

SUMMARY We propose an equivalent circuit model de-
scribed by the Rdssler equation. Then we can consider a coupled
Réssler system with a physical meaning on the connection. We
consider an oscillatory circuit such that two identical Réssler cir-
cuits are coupled by a resistor. We have studied three routes to
entirely and almost synchronized chaotic attractors from phase-
locked periodic oscillations. Moreover, to simplify understand-
ing of synchronization phenomena in the coupled Rossler system,
we investigate a mutually coupled map that shows analogous
locking properties to the coupled Rossler system.

key words: Rossler circuit, coupled oscillator, coupled map, non-
linear dynamical system

1. Introduction

The Réssler equation|!1],[2] is known as an au-
tonomous dynamical system to exhibit chaotic attrac-
tors. Because it has no physical model from which the
equation derived, we first propose an equivalent circuit
model described by the Rdssler equation. Then we can
consider a coupled Rdssler system with a physical mean-
ing on the connection. In this paper we consider an os-
cillatory circuit such that two identical Rssler circuits
are coupled by a resistor. Many investigations have been
done on synchronization of periodic and chaotic os-
cillations in mutually coupled oscillators[3]-{6]. The
coupled Réssler circuit is useful to consider a physical
mechanism of synchronized periodic motions, genera-
tion of chaos, synchronization of chaotic oscillations
and so on. Moreover, in recent years, chaotic synchro-
nization in a coupled discrete dynamical system is stud-
ied [7]. In this paper, to simplify understanding of syn-
chronization in the coupled Rossler system, we also in-
vestigate a mutually coupled map that shows analogous
locking phenomena to the coupled Rdssler system. Our
objective of the analysis is to answer the question, “How
does chaotic synchronization generate through bifurca-
tions of synchronized periodic oscillations?”’

2. Coupled Rossler Circuit

The Rossler equation is a three-dimensional au-
tonomous differential equation given by
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dx
dt
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dt
dz
dt
with the parameters a, b and c. We now consider the
circuit shown in Fig. 1. The dynamics is written as
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where the controlled source e is characterized by
e(v,ip) = avip with a constant parameter . Rescal-
ing coordinate system
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Therefore, (2) with 8 = 1 is equivalent to the Rdssler

equation. In this paper we will study a circuit such

that two identical Rdssler circuits are coupled by a con-

ductor GG through a-a’ port in Fig. 1. The dynamics is
normalized as follows

et —y~z
=z +ay

=bx —cz + Bzz (3)

dzy
dt
dyx

E:xk—i—ayk

= —yp — 2k — d(xp — Tp—1)



YOSHINAGA et al: BIFURCATIONS IN A COUPLED ROSSLER SYSTEM

Fig. 1  Radssler circuit.

dzk.

— k=1,2
dt » =

= bxy, — czp + Tp2k, To = T2

4)

where

[ L1
d=G el

In the following, parameters except a and c are fixed as
b=1 and d = 0.01.

3. Coupled Map

We treat a discrete dynamical system composed by cou-
pling of two quadratic maps:

2k +1) = (k) — A — 8 (y(k) — (k)
y(k+1) = 52(k) — A — 6 (a(k) - y(k)) (5)

or equivalently

w(k 4 1) = = (WP(k) + (k) — VA

V2
o(k+1) = (V2u(k) +26) v(k) 6)
with an orthogonal transformation such that
u = %(fc +)
v= %(m — ) (7)

The coupling coefficient ¢ is fixed as 0.01.
4. Some Preliminaries

We summarize notations about analysis of fixed or pe-
riodic points in (5) and limit cycles observed in (4).
We discuss qualitative properties of a periodic solu-
tion of (4) by reducing to the study of a periodic point
of the Poincaré map [8]-[10], defined by a cross sec-
tion {(Uy,Uz) € R® | 2y = 0, dzy/dt < 0}, where
U; = (x4,y5,2i), 1 = 1,2. We now define notations for
fixed or periodic points of (5) and the Poincaré map for
(4). The symbol ;D™ (resp. ;™) denotes a hyperbolic
periodic point such that D (resp. ) indicates a type with
even (resp. odd) number of characteristic multipliers on

1277

the real axis (—oo, —1), k indicates the number of char-
acteristic multiplier outside the unit circle in the com-
plex plane, m indicates m-periodic point, and [ denotes
the number to distinguish the same qualitative type of
periodic points. Note that the system of (4) is invariant
with respect to the replacing of state variables:

P, : RS> R%:
(U1,Uz) = P.(Ur,Us) = (Up, Uy) (8)

and similarly (5) is invariant with respect to the trans-
formation

P, : R®* - R%;
(#,y) = Pa(z,y) = (y,2) 9)

Therefore, there may exist periodic solutions with sym-
metrical properties. If there is another periodic orbit
with a symmetrical property (appeared in the follow-
ing section), then we add pre-superscripts = and #* to
symbols for their periodic points.

5. Main Results
5.1 Properties of Periodic Points in Coupled Map

Before showing results on the coupled Rossler system,
we show properties of periodic points in the weakly
coupled map (5). By increasing the value of A, one-
parameter bifurcation diagram is schematically illus-
trated in Fig. 2. In the figure, a couple of periodic orbits
specified by symbols with pre-superscripts = and ** is
symmetric each other with respect to the w-axis. Fig-
ure 3 shows a diagram of phase portrait for periodic
points in (5} or (6) at A = 1.3. By the iteration of the
discrete system, the periodic point in Fig.3 moves in
the increasing order of the parenthesized number. It is
well known that, in a single quadratic map, the periodic
points can be imbedded in a horseshoe rectangle region.
In the two-coupled quadratic map, we see that the pe-
riodic points can be imbedded in the double horseshoe
operations in both v and v directions. Here we define
a symbolic rotation sequence[11]—[13] for an orbit on
the v-axis or the orthogonal subspace of P,,-invariant
subspace. For the rotation sequence, we use a notation
written by the alphabet {L, R} with full bits[13], which
is derived from the rotation sequence of Myrberg, e.g.,
the symbol [LRLR] is for 3D# in Fig. 3.

5.2 Bifurcations in Coupled Rdssler System

We shall show numerical results on bifurcational pro-
cess to chaotic attractors. Figure 4 shows a bifurcation
diagram to see a fundamental route to chaotic states.
The periodic solution observed in the area by shading
4, is locked with in-phase mode. By increasing the
value of a for fixed ¢ = 3, we obtain the one-parameter
bifurcation diagram, which is qualitatively same as the
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state

parameter

Fig.2  Schematic diagram of one-parameter bifurcation for (5)
(resp. (4)), where the ordinate shows norms of the states and the
abscissa shows the parameter A (resp. a) in (5) (resp. (4)). The
solid and dotted lines denote stable and unstable periodic points,
respectively. Symbols: ® for period-doubling bifurcation; x for
tangent bifurcation; @ for D-type of branching; and @ for the
Hopf bifurcation.
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Fig. 4  Bifurcation diagram. The curve denotes the period-

doubling bifurcation. The areas in which stable periodic points
0D§, 0DZ, and o D¢ exist are, respectively, indicated by shading
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Fig. 3 Schematically illustrated phase portrait of periodic
points of (5) at A = 1.3. The dotted line satisfies x = y or
v = 0. The parenthesized number shows the order of iteration.
The periodic points in their symmetrical positions with respect
to the z = y line or the u-axis are omitted.

figure in Fig.2. The symbols with pre-superscripts x*
and *x in Fig.2 specify the periodic points whose cor-
responding solutions of (4), say *U and **U, satisfy
P.(*U) = **U. We see that several routes to chaotic at-
tractors are found: (i) ¢D2",n = 0,1,2,---; (ii) ¢ D3,
n=12---; and (iii) ODZH, n =23 - We now
consider properties of the sequences. First, we con-
sider the sequence of (i), caused by continuous varia-
tion of the parameter a. The fixed point (D} corre-
sponds to the in-phase-locked periodic oscillation, and
any oD2" satisfies u;(t) = ua(t) for all ¢, where u is
xz, y or z. Therefore a chaotic oscillation caused by
the sequence of period-doubling bifurcations is entirely
synchronized, see Fig. 5.

Second, we consider the successive occurrences of
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(d) entirely synchronized chaos at @ = 0.601

Fig. 5  Trajectory corresponding to the periodic point OD[Q)H
and chaos. (Left) Phase portrait. (Right) Waveform. All so-
lutions satisfy x1(t) = xz2(¢). Figure 4 shows this cascade of
period-doubling bifurcations.

parameter regions in which the stable periodic point
0D3" is generated by a D-type of branching

DY = oD% 43D 4D (10)

The bifurcated stable periodic point has property on its
corresponding waveforms with period 7":

up (t+T/2) = ua(t) (11)

where u is z, y or z of the periodic solution. Because the
property of (11) is preserved for a large n, the sequence
causes an almost synchronized chaotic oscillation, see
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Fig. 6  Trajectory corresponding to the periodic point ngn
and chaos. In the figure for waveform, heavy and light curves
denote z; and z2, respectively.

Fig.6. The corresponding rotation sequence for ¢ D3
of (6)is [LL---LRR--- R] with 2" bits for n = 1.

Third, we show a coexistence of another type of
almost synchronized chaotic oscillation, which is gen-
erated by a doubling-process of periodic points denoted
by oD2". The corresponding waveforms with period 7'
have property such that

ul(t+T/4) = 'lj,2<t) (12)

where u is z, y or z of the periodic point oD for a fi-
nite number of n. The corresponding rotation sequence
for oD} of (6) is [LL---LRR---RLL---LRR---R]
with 2™ bits for n > 2. The phase-locking may be al-
most preserved for a larger n and then produces another
type of chaotic synchronization, see Fig. 7.

6. Conclusions

We have proposed a circuit model for the Réssler equa-
tion, and investigated synchronization of chaotic oscil-
lations in the coupled Rdssler system. Moreover, we
have studied three routes to entirely and almost syn-
chronized chaotic attractors from phase-locked periodic
oscillations. It is conjectured that there exist many se-
quences for producing chaotic oscillations with various
phase-locking modes. We also have shown that lock-
ing phenomena observed in the coupled Rossler system
can be reduced to properties of periodic points in the
coupled quadratic map.
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