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Abstract— In this paper we propose a numerical
method to calculate basin bifurcation sets in a param-
eter space. It is known that the basin bifurcations
always result from the contact of a basin boundary
with the critical curve segment. A numerical exam-
ple for a two-dimensional quadratic noninvertible map
is illustrated and new results of basin bifurcations are
shown.

I. Introduction

It is worth noting that many systems in engineering,
particularly in control theory and electronics, lead to
models expressed by noninvertible maps. This is par-
ticularly the case in some control systems using sam-
pled data, switching elements or pulse modulation,
and also in some adaptive controls [1, 2]. Moreover,
modeling in economics [3] and biology [4] often gives
rise to noninvertible maps.

For the analysis of two-dimensional noninvertible
maps (e.g. basin bifurcation, definition of absorbing
and chaotic areas, homoclinic and heteroclinic points,
and their bifurcations, formation of self intersection
of the unstable manifold of a saddle fixed point and
so on), it is known that a critical curve (abbrev. LC
for “Ligne Critique” in French) and a curve of merg-
ing preimages (LC−1 : the first rank preimages of
LC) play an essential role. The critical curve is the
two-dimensional generalization of the notion of critical
point of one-dimensional endomorphism. When the
map is continuous and continuously differentiable (of
class C1), then the curve of merging preimages (LC−1)
is included in the set defined by J = 0, where J de-
notes the Jacobian determinant of the map.

To our knowledge, for studying two-dimensional en-
domorphisms, the notation of critical curve was first
introduced in 1964 in relation to its role in the deter-
mination of basin boundaries [5]. Since 1969, several
papers have developed the role of critical curves in the
basin bifurcations called “simply connected basin ⇔
disconnected basin” and “simply connected basin ⇔
multiply connected basin” [6]. Even now these are hot
topics [7], because the basin bifurcations may corre-

spond to global bifurcations and may have interesting
structure fundamentally different from those produced
by an invertible map. These basic basin bifurcations
always result from the contact of a basin boundary
with the critical curve segment and are generated by
the same basic mechanisms. Now, we know the mech-
anisms of the basic basin bifurcations, however in gen-
eral there are no systematic methods to obtain the
bifurcation value of the system parameter. If we know
the set of bifurcation values in the parameter space,
we can design a system with the optimal operating
condition. Therefore we need an algorithm to obtain
these bifurcation parameter values for setting the sys-
tem parameter.

II. Definition of system

We consider a two-dimensional noninvertible map as a
function of a parameter λ defined by

Tλ : R2 → R2; (x, y) �→ (x′, y′). (1)

The singular set of Tλ is denoted by LC−1: LC−1 =
{X ∈ R2 | det DTλ(X) = 0}, where DTλ is the deriva-
tive of Tλ (Jacobian matrix). The set Tm

λ (LC−1) is
denoted by LCm−1, in particularly when m = 1 it is
called critical curve (LC).

Here we assume that the critical curve LC separates
R2 into two open regions Z0 and Z2. A point X be-
longing to Z2 has two distinct preimages and a point
X of Z0 is without preimages. Therefore the map (1)
is called (Z0, Z2) type and has simplest properties of
a noninvertible map.

III. Method

In this section we explain the algorithm for obtaining
the parameter of the tangent point of critical curve
and basin boundary (see Fig. 1(b)). This parameter is
called basin bifurcation value, because the basin un-
dergo a qualitative change. For obtaining the initial
conditions of Fig. 1(b), we also consider the case of
Fig. 1(a).

Now, the problem is “how to calculate basin bound-
ary which is tangent to LC ?” Generally speaking, the



basin boundary is given by global stable invariant set
WS(Dn), where Dn is saddle type n-periodic points
satisfying

Tn
λ (Dn) = Dn (2)

on the basin boundary. Let U be a neighborhood
of Dn. Then using the local stable invariant set
WL

S (Dn), WS(Dn) which is tangent to LC is given by
(WL

S (Dn))−m (rank-m preimages of WL
S (Dn)), where

m is a positive integer [9]. Note that when Tλ is a non-
invertible map, WS(Dn) may be non-connected and
made of infinitely many closed curves.

Moreover, using next property [10]:

[property 1] If a curve C and LC intersect at a
point P , then T l

λ(C) and LCl meet tangentially at
T l

λ(P ), where LCl = T l
λ(LC) and l is any integer,

we calculate the tangent point of WL
S (Dn) and LCm

instead of (WL
S (Dn))−m and LC, for simplicity (see

Fig. 2). The intersecting (or tangent) point P in Fig.
1 is equivalent to Q0 in Fig. 2.

A. Transverse type

We take an ε-neighborhood U (ε, Dn) as shown in Fig.
2(a) [11, 12], then there exists a positive integer M
such that

Q0 = T−M
λ (QM ), QM ∈ U (ε, Dn). (3)

The map Tλ is noninvertible, however in the region Z2

it is possible to explicitly compute the inverse map.
To calculate preimages of general noninvertible maps,
see Ref. [13]. From property 1, the point Q0 also
satisfies

Q0 = Tm
λ (P ). (4)

Substituting Eq. (4) into Eq. (3), we obtain

Tm
λ (P ) − T−M

λ (QM ) = 0 (5)

Here we use the first order approximation or eigenvec-
tor as the linearization of W L

S in the ε-neighborhood.
The condition such that the point QM is included in
WL

S is written as

W ∗
S(QM − Dn) = 0 (6)

where the row vector W∗
S is

W ∗
S = (1 0) (µωI − DTλ), or

(0 1) (µωI − DTλ) (7)

In the equation, DTλ indicates the derivative of Tλ

with respect to the n-periodic points Dn, and |µω| < 1
denotes the characteristics multiplier.

If W L
S intersects the curve LCm at the point Q0,

then Eq. (6) is independent of Eq. (5). Therefore we
can determine variables (P, QM ) ∈ R3 for the set of
Eq. (5) and (6). (Note that P is a one-dimensional
variable, because P is on LC.)
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Figure 1: Two types of intersecting points (P ) of basin
boundary (C) and critical curve (LC).
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Figure 2: Equivalent situation to Fig. 1.

B. Non-transverse type

Let

φ : R −→ R2; s �→ φ(s) (8)

be a representation of WL
S in U (ε, Dn), where φ(0) =

Dn and φ(sω) = QM .
We now consider the derivative of φ with respect to

s, that is,
dφ

ds
(s) = V (φ(s)) (9)

then we have a tangent vector of WL
S at the point Q0

d(T−M
λ ◦ φ)
ds

∣∣∣∣∣
S=Sω

= DT−M
λ (φ(sω))

dφ

ds
(sω)

= DT−M
λ (QM )VS0 (10)

where V (φ(sω)) = VS0 , for simplicity. Hence we have
a condition for coincidence of the directions of WL

S and
LCm:∣∣∣∣DT−M

λ (QM )VS0

... DTm(P )
(

α
β

)∣∣∣∣ = 0 (11)

where VS0 is the eigenvector (linearized WL
S in ε-

neighborhood) and (α β)T is the tangent vector of
LC at the point P . Hence the problem is reduced to
determine variables (Dn, P, QM , λ) ∈ R6 for the set
of Eqs. (2), (5), (6) and (11).



IV. Numerical Example

We illustrate numerical results for the following map:

xn+1 = axn + yn, yn+1 = x2
n + b. (12)

The critical curve LC is defined by y = b. We cal-
culate the tangent point of LC and a basin boundary
formed by a stable invariant set of saddle type peri-
odic points. Therefore in advance we must know the
location and period of the saddle type periodic points
on the boundary, using, e.g., a bifurcation diagram for
periodic points.

We obtain a bifurcation diagram (see Fig. 3) of 5-
periodic points using Kawakami’s method [14]. In this
figure, G, I and N represent tangent (fold), period-
doubling (flip) and Neimark-Sacker bifurcation sets of
5-periodic points, respectively. To explain the bifur-
cation phenomena for 5-periodic points in Fig. 3, we
change the parameter b along the line L. By the tan-
gent bifurcation set G (marked by ©1 in Fig. 3), two
5-periodic points: 0D

5 and 1D
5 (superscript and sub-

script of D indicate period and unstable subspace of
periodic points, respectively) appear. The stable 5-
periodic points 0D

5 exist in the shaded region. In
this region we can calculate the basin of the 5-periodic
points. On the period-doubling bifurcation set I of
the unstable 5-periodic points 1D

5 (©2 ), there appear
saddle type 10-periodic points 1D

10. Hence we use
the 10-periodic points as Dn mentioned in Sec. 3. On
the Neimark-Sacker bifurcation set N of the stable 5-
periodic points (©3 ), the 5-periodic points become un-
stable and generate quasi-periodic solutions (5 invari-
ant closed curves).

By using the method proposed in Sec. 3, we obtain
basin bifurcation sets B shown in also Fig. 3. Figure
4 shows a enlarged diagram of Fig. 3. Note that we
do not calculate all the basin bifurcation sets in this
parameter region. The basin bifurcation sets B1 to
B5 separate the parameter (a, b) plane into six parts.
In each part we calculate basin for 5-periodic points
and show them in Fig. 5(a) to (h). In each figure the
plane is the set of initial state (x0, y0) and the so-
lution which starts from the outside region of basin
goes to infinity. The basin is classified into 5 differ-
ent colors At the point marked (a) in Fig. 4, there
exists a simply connected basin (see Fig. 5(a)). On the
curve B1, one of the basin boundary touches the crit-
ical curve LC. As a result there appear holes in the
basin (Fig. 5(b)) and simply connected basin becomes
multiply connected basin (Fig. 5(c)). By crossing the
bifurcation curves B2 and B3, basin Fig. 5(c) bifur-
cates to Fig. 5(d) and (e), respectively. In Fig. 5(e)
two different holes H2 and H3 appear in hole H1. By
crossing the bifurcation curves B4 and B5 again, basin
Fig. 5(f) bifurcates to Fig. 5(g) and (h), respectively.
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Figure 3: Bifurcation sets of 5-periodic points (G, I
and N ) and basin bifurcation sets (B).
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Figure 4: Enlarged diagram of Fig. 3.

We can see the occurrence of successive basin bifurca-
tions.

V. Conclusions

We proposed the numerical method to calculate basin
bifurcation values. At this parameter the critical curve
is tangent to a stable invariant set of saddle type peri-
odic points on the basin boundary. We derived some
bifurcation conditions and solved them numerically.
We only showed the algorithm for “simply connected
basin ⇔ multiply connected basin”, but our algorithm
is applicable to the other basin bifurcations classified
in Ref. [8].

As an illustrated example, we showed basin bifur-
cation diagrams for a two-dimensional quadratic non-
invertible map. In the bifurcation diagram, we found



(a) a = 0.55. b = −0.8596. (b) a = 0.55. b = −0.8598.

(c) a = 0.55. b = −0.865. (d) a = 0.55. b = −0.8656.

(e) a = 0.55. b = −0.866. (f) a = 0.55. b = −0.8773.

(g) a = 0.55. b = −0.8774. (h) a = 0.55. b = −0.879.

Figure 5: Basin of 5-periodic points for Eq. (12).

successive “simply connected basin ⇔ multiply con-
nected basin” bifurcations which never reported, as far
as we know. As a result of these bifurcations, there ap-
pear many holes in the basin and the basin structure
becomes very complicated. Using our algorithm, we
can clarify the parameter region in which the compli-
cated basin bifurcations occur.

Our future problems are (1) to find a engineering
application and (2) to applicate a higher-dimensional
system.
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