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Abstract— In a previous report, we classified pe-
riodic solutions into eight different types according to
their symmetrical properties. However stable solutions
were only two types. In this report, to obtain more
stable states, we investigate bifurcations observed in
two identical BVP oscillators with fifth order charac-
teristics coupled by an inductor containing resistive
component. We consider two cases that the single os-
cillator has (1) hard oscillation and (2) three stable
equilibrium points. In total we obtain six kinds of
periodic solutions. Moreover in the case (2), chaotic
attractors caused by a cascade of period-doubling bi-
furcations are found.

I. Introduction

Systems of coupled oscillators with fifth order char-
acteristics have been investigated [1–4]. Datardina
et al. studied two coupled oscillators [1] and Endo et
al. considered N coupled oscillators in a ladder struc-
ture [2]. They obtained that there exist three kinds
of stable states: zero (equilibrium point at the origin),
two single-modes (in-phase and anti-phase solution)
and a double mode (quasi-periodic solution). However
by using symmetrical properties of the systems we pre-
dict that many single modes not referred in [1, 2] will
exist.

In [5] we theoretically classified equilibrium points
and periodic solutions into four and eight types, re-
spectively, according to their symmetrical properties.
We numerically confirmed the existence of the classi-
fied solutions, however stable periodic solutions are in-
phase and asymmetrical solutions, because the single
oscillator has a stable periodic solution invariant un-
der inversion of state variables and equilibrium points
not the origin.

One of our aim of this study is to obtain more sta-
ble periodic solutions classified in [5]. Therefore we
construct the system of two identical oscillators with
fifth order characteristics coupled by an inductor con-
taining resistive component. By obtaining bifurcation
sets of periodic solutions we clarify parameter regions
in which the classified solutions are stably exist and
the appearance mechanisms of the classified solutions.
Moreover we observe chaotic attractors caused by suc-

cessive period-doubling bifurcations of asymmetrical
periodic solutions.

II. Circuit Equation

We consider an inductively coupled oscillator system
shown in Fig. 1. The circuit equations are described
as

L
di1
dt

= v1 − ri1

C
dv1

dt
= −i1 − g(v1) − i3

L
di2
dt

= v2 − ri2

C
dv2

dt
= −i2 − g(v2) + i3

L0
di3
dt

= v1 − v2 − R0i3

(1)

where nonlinear conductance g(v) has fifth order char-
acteristics:

g(v) = a1v + a3v
3 + a5v

5. (2)

After normalization we obtain

dx1

dt
= ωy1 − σx1

dy1

dt
= −αy1 − βy3

1 − γy5
1 − ωx1 − ω0x3

dx2

dt
= ωy2 − σx2

dy2

dt
= −αy2 − βy3

2 − γy5
2 − ωx2 + ω0x3

dx3

dt
= −σ0x3 + ω0(y1 − y2)

(3)

where

yk =
√

Cvk, xk =
√

Lik, (k = 1, 2), x3 =
√

L0i3,

ω =
1√
LC

, ω0 =
1√
L0C

, σ =
r

L
, (4)

σ0 =
R0

L0
, α =

a1

C
, β =

a3

C2
, γ =

a5

C3
.
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Figure 1: Circuit diagram.

III. Results

We fix the parameters in Eqs. (3) as

β = −1.4, γ = 0.4, σ0 = 0.5, σ = 0.5.

The parameter ω0 in Eqs. (3) can be considered as
coupling coefficient, so we choose α and ω0 as bifur-
cation parameters. We study bifurcation problems in
two cases:

1. ω = 1.0. The single oscillator has a stable pe-
riodic solution and a stable equilibrium point at
the origin. This state is called hard oscillation.

2. ω = 0.5. The single oscillator has only stable
equilibrium points.

In the following bifurcation diagrams, the symbols G,
D, N and I indicate tangent, pitchfork (D-type of
branching), Neimark-Sacker and period-doubling bi-
furcation, respectively.

A. ω = 1.0

We show a bifurcation diagram in Fig. 2. In this
figure we observe stable in-phase, anti-phase and al-
most in-phase solutions in the region
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and , respectively. Each solution is shown in
Fig. 3. Because the single oscillator has a stable peri-
odic solution, we observe the stable in-phase solution.
Moreover the coupling element contains an inductor,
the anti-phase solution stably exists. This stable anti-
phase solution never exists in a resistively coupled os-
cillator with voltage ports. The almost in-phase so-
lution is generated by D-type of branching D1 of the
in-phase solution but it is unstable. Through tangent
bifurcations G3 to G6, the almost in-phase solution
becomes stable in the region .

On the tangent bifurcation set G1 except for be-
tween points marked by ©1 and ©2 in Fig. 2, the char-
acteristic multipliers satisfy two bifurcation (tangent
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Figure 2: Bifurcation diagram. The subscript 1 and 2 de-
note the bifurcation sets of the in-phase and the
anti-phase solution, respectively. G 3 to G6 are
tangent bifurcation sets of the almost in-phase so-
lution generated by D-type of branching D 1 of the
in-phase solution. Small squares above the bifur-
cation diagram represent the location of charac-
teristic multipliers in a complex plane.

and Neimark-Sacker) conditions. To clarify this phe-
nomenon we consider the system applied DC term J
for the first equation of Eqs. (3). When the parameter
ω0 is less than the point marked by ©1 (or larger than
the point marked by ©2 ), tangent and Neimark-Sacker
bifurcation sets intersect on the axis of J = 0, see
Fig. 4(a). This bifurcation is a degenerate codimen-
sion two bifurcation. A quasi-periodic solution gener-
ated by the Neimark-Sacker bifurcation N is unstable
therefore we can not observe it. At the critical point
marked by ©1 (or ©2 ), the Neimark-Sacker bifurcation
set N disappears, see Fig. 4(b), and D-type of branch-
ing D1 corresponding to a cusp point of a tangent bi-
furcation touches the tangent bifurcation set G1, see
Fig. 2. Between the point marked by ©1 and ©2 , the
bifurcation structure on (J , α) plane is shown in Fig.
4(c) hence the characteristic multipliers on G1 satisfy
only a tangent bifurcation condition.

The solutions shown in Fig. 3(c) and Fig. 3(d)
meet Neimark-Sacker bifurcations and generate quasi-
periodic solutions, see Fig. 5(a) and (b). These quasi-
periodic solutions are stably observed in a wide pa-
rameter range because the parameter values of ω and
ω0 are different.
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(a) In-phase. α = 0.4. ω0 = 1.0.
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(b) Anti-phase. α = 0.4. ω0 = 1.0.
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(c) Almost in-phase. α = 0.4. ω0 = 1.0.
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(d) (Ī5, L/2)-symmetrical solution [5]. α = 0.4. ω 0 = 0.45.

Figure 3: Phase portrait. Arrows and the points marked
by closed circles indicate the time direction of the
trajectory and the fixed point of Poincaré map,
respectively. (Left) Oscillator 1 vs. Oscillator 2.
(Middle) Oscillator 1. (Right) Oscillator 2.

B. ω = 0.5

We observe stable almost anti-phase solutions, see Fig.
6(a), generated by D-type of branching of the anti-
phase solution. These almost anti-phase solutions
meet D-type of branchings and generate asymmetri-
cal periodic solutions shown in Fig. 6(b). These two
solutions: almost anti-phase and asymmetrical solu-
tions can not be confirmed in the system of ω = 1.0.
Decreasing the parameter ω0 asymmetrical solutions
meet successive period-doubling bifurcations and gen-
erate chaotic attractors, see Fig. 7. One-parameter
bifurcation diagram of two asymmetrical solutions is
shown in Fig. 8. At ω0 � 0.5355 two chaotic attractors
are merged into one attractor. An interesting point is
that even though the single oscillator has only equi-
librium points, by changing the value of the coupling
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Figure 4: Schematic bifurcation diagram.
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(a) Quasi-periodic solution from almost in-phase solution. α =
0.4. ω0 = 0.88.
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(b) Quasi-periodic solution from ( Ī5, L/2)-symmetrical solu-
tion. α = 0.4. ω0 = 0.5.

Figure 5: Phase portrait of quasi-periodic solution.

inductor we obtain not only an anti-phase periodic so-
lution but also chaotic attractors.

IV. Concluding Remarks

Bifurcations of periodic states observed in a coupled
oscillator with hard characteristics have been investi-
gated. We considered two cases that the single oscilla-
tor has (1) oscillatory solution and (2) only equilibrium
points. We obtained the following things in each case:

(1) Stable in-phase, anti-phase and almost in-phase
solutions are confirmed. We found degenerate
codimension two bifurcation sets which satisfy
both tangent and Neimark-Sacker bifurcation
conditions. Considering the system applied DC
term, we clarified the bifurcation structure and
obtained that the quasi-periodic solution caused
by the Neimark-Sacker bifurcation is unstable.



(2) Even though the single oscillator has only equi-
librium points, the coupled system has an
anti-phase periodic solution because the sys-
tem coupled by a state variable. By calculat-
ing symmetry-breaking bifurcation set, the anti-
phase solution bifurcates to asymmetrical so-
lutions. Moreover we found chaotic attractors
caused by a cascade of period-doubling bifurca-
tions of asymmetrical solutions.

To analyze the case of a large number of coupled os-
cillators is an interesting problem for the future.
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(a) Almost anti-phase solution. α = 0.31. ω 0 = 0.8. ω = 0.5.
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(b) Asymmetrical solution. α = 0.52. ω 0 = 0.539. ω = 0.5.

Figure 6: Phase portrait.
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Figure 7: Chaotic attractor. α = 0.522. ω 0 = 0.5356. ω = 0.5.

Figure 8: One-parameter bifurcation diagram. α = 0.522.
ω = 0.5.


