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Abstract— We consider a system of coupled two
oscillators with external force. At first we introduce
the symmetrical property of the system. When the
external force is not applied, the two oscillators are
synchronized at the opposite phase. We obtain two
different kinds of bifurcation diagrams: the unforced
system has (1) stable anti-phase and unstable in-phase
solutions and (2) stable anti-phase, unstable in-phase
and I1/2-invariant solutions. We find that the synchro-
nized oscillations eventually become in-phase when the
amplitude of the external force is increased.

I. Introduction

Systems of coupled oscillators have been used exten-
sively in physiological and biochemical modeling stud-
ies. Many investigators have been studied two mutu-
ally coupled oscillators [1]–[3] because two oscillators’
case is a prototype modeling to understand the phe-
nomena in a large number of coupled oscillators. For
instance, Kimura et al. investigated synchronization
phenomena observed in two oscillators coupled by a
resistor with current connection [3]. They confirmed
that these oscillators were synchronized at the oppo-
site phase. Using group theoretic discussion applied
to the coupled oscillators, we can derive some general
theorems concerning with the bifurcations of equilib-
rium points and periodic solutions [4].

In this study a forced coupled oscillator is analyzed.
The dynamics of the circuit becomes invariant under
the transformations: (1) interchange of the state vari-
ables, and (2) inversion of state variables with time
shift π radian [5]. The periodic external force is in-
jected into the invariant subspace of the transforma-
tion (1). When the external force is not applied,
the two oscillators are synchronized at the opposite
phase. We obtain two different kinds of bifurcation
diagrams: the unforced system has (1) in-phase and
anti-phase solution and (2) in-phase, anti-phase and
I1/2-invariant solution. We find that the synchronized
oscillations eventually become in-phase when the am-
plitude of the external force is increased. The bifurca-
tion processes corresponding to the synchronizations
stated above are clarified by the bifurcation diagrams.
In the diagram we obtain codimension three bifurca-
tion point of intersection of D-type of branching and
Neimark-Sacker bifurcation. Around this point we ob-

serve the bifurcation of quasi-periodic solutions.

II. Circuit Equation and Related Property

We assume nonlinear conductance g(v) and voltage
source e(t) in Fig. 1 as

g(v) = −a1v + a3v
3 , e(t) = E sin(νt). (1)

Then the normalized circuit equations are described
by
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Equations (2) have following symmetrical operations:

σ0 : R4 × R → R4 × R ;
(r1 s1 r2 s2 νt) �→ (r1 s1 − r2 − s2 νt)

I1/2 : R4 × R → R4 × R ; (4)
(r1 s1 r2 s2 νt) �→ (−r1 − s1 − r2 − s2 νt − π)

σ1/2 : R4 × R → R4 × R ;
(r1 s1 r2 s2 νt) �→ (−r1 − s1 r2 s2 νt− π)
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Figure 1: Circuit diagram.

III. Results

We fix the parameters in Eqs. (2) as

c3 = 1/3, δ1 = 1.0, ω = 1.0, σ = 0.5.

A. Bifurcations of the unforced system

At first we study bifurcations of the unforced system
which B = 0 in Eqs. (2). Figure 2 shows a bifurcation
diagram of the unforced system. In the shaded eegion

there exists a stable equilibrium point at the ori-
gin. Changing the parameters along the curve l, the
first Hopf bifurcation 0h2 and the second Hopf bifur-
cation 0h1 generate anti-phase and in-phase periodic
solution, respectively. The in-phase solution meets the
D-type of branching D1 (symmetry-breaking bifurca-
tion) and generates two I1/2-invariant solutions [6]. In
the next section we consider two cases: the unforced
system has (1) anti-phase and in-phase solutions (the
point (1) in Fig. 2) and (2) anti-phase, in-phase and
I1/2-invariant solutions (the point (2) in Fig. 2).

B. Forced synchronization

B.1. case(1)

Figure 3 shows a bifurcation diagram of periodic so-
lutions in Eqs. (2). Because the unforced system
(B = 0) has anti-phase and in-phase solutions, their
corresponding bifurcation sets G1 and G2, and G4, re-
spectively, meet the axis of B = 0 at ν1 and ν2. Here
we are interested in how to change the anti-phase so-
lution under the influence of external force. Figures
4(a)–4(d) show trajectories of the solutions when the
amplitude B of the external force is increased. Note
that the external force is applied in-phase direction,
see Eqs. (2). When B = 0 the oscillators synchro-
nize at the opposite phase, see Fig. 4(a). Increasing
B two I1/2-invariant solutions appear (Fig. 4(b) and
(c)). If we can find one of them, by the operation σ0

or σ1/2 we can easily obtain the other solution. In the
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Figure 2: Bifurcation diagram of equilibrium points in
Eqs. (2) where B = 0. Dashed and solid lines indi-
cate Hopf bifurcation of the equilibrium point at the
origin and D-type of branching of periodic solutions,
respectively.

region these two solutions stably exist. Increas-
ing B the oscillators synchronize in-phase in the region

.
In Fig. 3 open circles indicate the points of inter-

section of Neimark-Sacker bifurcation set and D-type
of branching set of periodic solutions called codimen-
sion three bifurcation. Two Neimark-Sacker bifurca-
tion sets N1 and N2 (or N3 and N4) are the bifurca-
tions of different periodic solutions. Changing the pa-
rameter along the line l1 and l2 two stable and one un-
stable quasi-periodic solutions are generated, respec-
tively. The two stable solutions are shown in Fig. 5(a)
and (b). Decreasing the parameter B two quasi-
periodic solutions become one solutions, see Fig. 5(c).
These bifurcation structure is similar to those of P2-
codimension two bifurcation point[7]. Thus we predict
that the large quasi-periodic solution disappear with
the quasi-periodic solution generated by N4.

B.2. case(2)

Figure 6 shows a bifurcation diagram of periodic solu-
tions in Eqs. (2). Because the unforced system (B = 0)
has anti-phase, I1/2-invariant and in-phase solutions,
their corresponding bifurcation sets G1 and G2, G5

and G6, and G7 and G8, respectively, meet the axis of
B = 0 at ν1, ν2 and ν3. Tangent bifurcation sets G2

and G3 are separated and join to D-type of branching
at the points of marked by closed circles. Therefore
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Figure 3: Bifurcation diagram of periodic solutions in
Eqs. (2). The symbols G and N indicate tangent and
Neimark-Sacker bifurcation set, respectively. δ2 = 0.5.
c1 = 1.6.

synchronization area are separated and in the
shaded region two synchronized states are co-
exist.

Figure 7 shows a one-parameter bifurcation diagram
along the line l3 in Fig. 6.

IV. Concluding Remarks

We have investigated synchronization of coupled two
oscillators with external force. When the external
force is not applied, the two oscillators are synchro-
nized at the opposite phase. We obtained two differ-
ent kinds of bifurcation diagrams: the unforced system
has (1) anti-phase and in-phase solutions and (2) anti-
phase, in-phase and I1/2-invariant solutions. We found
that the synchronized oscillations eventually become
in-phase when the amplitude of the external force is
increased.

The future problems are to study as follows:

• forced synchronization when the unforced sys-
tem has different periodic solution,

• the bifurcation of quasi-periodic solutions
around the points of intersection of D-type of
branching and Neimark-Sacker bifurcation.
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Figure 5: Quasi-periodic solutions in Eqs. (2). (Left)
Trajectories. r1 vs. r2. (Middle) The points of Poincaré
map for Oscillator 1. (Right) The points of Poincaré
map for Oscillator 2.
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Figure 6: Bifurcation diagram of periodic solutions in
Eqs. (2). Small diagram denote the enlarged diagram
for small value of B. δ2 = 0.8. c1 = 1.7.
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Figure 7: One parameter schematic bifurcation dia-
gram along the line l3 in Fig. 6. Heavy and light curves
indicate the in-phase and I1/2-invariant solutions, re-
spectively. Subscript of D represent the dimension of
the unstable subspace. ©D and Gi denote the D-type of
branching and tangent bifurcations, respectively, cor-
responding to those of Fig. 6.


