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Abstract— Bifurcations of equilibrium points and
limit cycles in unidirectionally coupled three oscillators
are studied. According to their symmetrical proper-
ties, we classify equilibrium points and limit cycles into
three and eight different types, respectively. Possible
oscillations in unidirectional coupled three oscillators
are presented by calculating Hopf bifurcation sets of
equilibrium points. We also observe chaotic oscillation
caused by a cascade of period-doubling bifurcations.

I. Introduction

Systems of coupled oscillators are good models for
biological rhythmic oscillations such as human circa-
dian rhythms [1], finger movements [2], animal loco-
motion [3] and so on. The investigators have studied
the mechanism of oscillation and phase transitions be-
tween distinct oscillatory modes. From the standpoint
of bifurcation, the former and the latter correspond to
Hopf bifurcation of an equilibrium point and D-type
of branching of a periodic solution, respectively. Us-
ing group theory, it has been possible to derive some
general theorems concerning with the bifurcations of
equilibrium points.

In Ref. [4], we studied bifurcations of equilibrium
points and periodic solutions observed in coupled two
oscillators with voltage ports. We classified equilib-
rium points and periodic solutions into four and eight
different types, respectively, according to their sym-
metrical properties. By calculating D-type of branch-
ing sets (symmetry-breaking bifurcations) of equilib-
rium points and periodic solutions, we showed that all
types of equilibrium points and periodic solutions are
systematically found.

In this report we consider a ring BVP oscillator
network coupled unidirectionally by linear resistor.
This connection is interesting for studying the bifur-
cational mechanisms of coupled oscillator. Especially
to explain the appearance of phase shift oscillations
uniquely arisen by coupling effect the model serves as
a prototype circuit. We classify the equilibrium points
and the periodic solutions into three and eight differ-
ent types, respectively, according to their symmetrical
properties. Possible oscillations in three unidirection-
ally coupled oscillators are presented by calculating

Hopf bifurcation sets of equilibrium points. By cal-
culating bifurcation sets of periodic solutions, tran-
sitions between the solutions with different symmet-
rical properties are discussed. Moreover we observe
chaotic repellor without symmetry created by a cas-
cade of period-doubling bifurcations.

II. Circuit Equation and Related Property

We assume nonlinear conductance g(v) in Fig. 1 as
g(v) = —a1v + asv’. (1)

By connecting the output port b-b' to the next input
port a-a’ consecutively as a ring we realize a coupled
oscillator circuit [5]. In this report we consider three
oscillators case thus the normalized circuit equations
are described by
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We define matrices as:
O I, O R
P=|0 O I, |,Ig=—-1I (4)
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where I, is n X n identity matrix and O is 2 X 2 zero
matrix. We also define matrix group:

I = {Is, P, P?, Ig, I P, Is P?}. (5)

Then Egs. (2) is equivariant under the coordinate
transformation:

z— Gr;y— Gy, VG €T (6)
Note that I' has a cyclic and an inversion subgroups:

Cs = {Is, P, P?}, I = {Is, Is} (7)
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Figure 1: Circuit diagram.

III. Results
We fix the parameters in Egs. (2) as

cs=1/3, =10, w=1.0, 0 =0.5.

For these parameters the single oscillator has limit cy-
cles thus coupled oscillators have in-phase solutions.

A. Classification of equilibrium points and
limit cycles

To clarify the symmetrical property of trajectories we
use the following coordinate transformation:

u=Qx, v=_Qy (8)
where
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We classify equilibrium points into three different
types according to their symmetrical properties: (1)
the origin, (2) Cs-invariant and (3) asymmetry. Type
(1) is invariant under transformation (6). On the other
hand type (3) has no symmetrical operations. There-
fore if we can find one equilibrium point of type (3),
then six equilibrium points exist by the coordinate
transformation (6).

We also classify limit cycles into eight different types
according to their symmetrical properties. Figure 2
shows six kinds of limit cycles. Six points marked
by closed circles in each figure indicate the coordinate
transformation by the elements in I'. Tri-phase solu-
tions ((a)—(d)) are invariant under transformation by
the elements in C3 with time shift L/3 where L is the
period of the limit cycle. I-invariant solution (e) is in-
variant under transformation by the element in I with
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Figure 2: Classification of periodic solutions accord-
ing to their symmetrical properties. Arrows indicate
the time direction of trajectory. (Left) Phase portrait.
(Right) Waveform.

time shift L/2. In addition to Fig. 2 there exist in-
phase and “shifted in-phase” limit cycles. Hence in
total eight different limit cycles exist in Eqgs. (2).

B. Bifurcation diagrams

We show in Fig. 3 a bifurcation diagram of equilib-
rium points type (1) and (2). In the region sta-
ble equilibrium point of type (1) exists. Table 1 shows
that each bifurcation set in Fig. 3 generates what kinds
of equilibrium points and limit cycles. The eigenspace
of symmetrical equilibrium points of type (1) and (2)




is 2-dimensional in-phase direction and 4-dimensional
tri-phase direction. Thus the direction of their bifur-
cation is restricted to in-phase or tri-phase direction.
Therefore I-invariant limit cycles never occur by Hopf
bifurcation of the equilibrium point.

In Fig. 3 open circle represents the point of inter-
section of double Hopf bifurcations, called Hopf-Hopf
bifurcation in [6]. From this point two Neimark-Sacker
bifurcations appear and generate quasi-periodic solu-
tion [6]. Square in Fig. 3 represents the point of inter-
section of D-type of branching and Hopf bifurcation.
This codimension three bifurcation is not refereed in
[6, 7] therefore we study bifurcation structure around
it.

Figure 4 shows a bifurcation diagram around the
point of intersection of od; and ghs (Subscript 0 indi-
cates the bifurcation of the origin). From this point,
D-type of branching and Neimark-Sacker bifurcation
of limit cycle and Hopf bifurcation of equilibrium
point necessarily appear. The mechanisms are as fol-
lows: Tri-phase @ solution (Fig. 2(b)) caused by ¢hs
meets D-type of branching D (symmetry-breaking bi-
furcation) and generates “shifted tri-phase @” solu-
tion (Fig. 2 (d)). The “shifted tri-phase ®” solu-
tion crossed Neimark-Sacker bifurcation disappears by
Hopf bifurcation 1h3 of Cs-invariant equilibrium point
generated by od;.

Finally we show a bifurcation diagram of equilib-
rium points without symmetry in Fig. 5. Closed circle
denotes the point of intersection of tangent and Hopf
bifurcation called Fold-Hopf bifurcation in [6]. In the
region [ | and [ there exist completely unsta-
ble and stable equilibrium points without symmetry,
respectively. By crossing the Hopf bifurcation set h
from the region [ ], completely unstable limit cy-
cle is generated. Increasing the parameter € the limit
cycle meets a cascade of period-doubling bifurcations
and become chaotic repellor, see Fig. 6.

Table 1: Bifurcations in Fig. 3

notation | bifurcation
od1 the origin < Cjs-invariant
oh1 the origin < in-phase
oha the origin < tri-phase @
ohs the origin < tri-phase @

1hy Cs-invariant < shifted in-phase
1ha Cs-invariant < shifted tri-phase @
1hs Cs-invariant < shifted tri-phase @

IV. Concluding Remarks

We consider a system of coupled unidirectionally three
BVP oscillators. Equilibrium points and limit cycles
were classified into three and eight different types,
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Figure 3: Bifurcation diagram of symmetrical equilib-
rium points. The symbols d and h indicate D-type of
branching and Hopf bifurcation set, respectively.

respectively, according to their symmetrical proper-
ties. By calculating Hopf bifurcation sets of all types
of equilibrium points, possible oscillations in the sys-
tem were shown. We obtained bifurcation diagrams of
limit cycles and clarified the bifurcation structure of
the point of intersection of D-type of branching and
Hopf bifurcation called codimension three bifurcation.
Chaotic oscillations without symmetry created by a
cascade of period-doubling bifurcations were found.
To analyze the case of a large number of coupled
oscillators is an interesting problem for the future.
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Figure 4: Bifurcation diagram. The symbols N and
D indicate Neimark-Sacker bifurcation and D-type of
branching set of limit cycle, respectively.
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Figure 5: Bifurcation diagram of equilibrium points
without symmetry. The symbol ¢ indicates tangent
bifurcation and another curves represent Hopf bifur-
cation. In a trapezoid manifolds of equilibrium points
are shown. @ to @ indicate tangent bifurcation cor-

responding to g1 to g4, respectively.
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(d) Six chaotic repellor by

(c) Oscillator 3 transformation (6).

Figure 6: Chaotic oscillation without symmetry. § =
0.06. € = 2.81.



