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Abstract

Bifurcations observed in a phase converter circuit are
investigated. We obtain a codimension two bifurcation
which is intersection of period-doubling bifurcation-
s. Periodic solutions generated by these bifurcations
become chaotic states through a cascade of a codimen-
sion three bifurcation which is intersection of D-type
of branching and period-doubling bifurcation.

I. INTRODUCTION

In this paper we study codimension two bifurcations
observed in a forced oscillatory circuit containing sat-
urable inductors, which is called a phase converter cir-

cuit, see Fig. 1. The normalized circuit equations are
described by

d_m
dt
dy
dt
d_u
dt
dv

= —kv — (3co + c1)u — Fes(a? + 3uP)u

+Bcost+ By

where
T =g — Py, U= ¢, k=g/wC, Bx E, By x Ey

In this circuit, the characteristic of inductor is assumed
to be a cubic function, i.e., the relation between cur-
rent 7 and flux ¢ is assumed to be i = ¢;¢ + c3¢3. E-
quations (1) can be considered as a nonlinear coupled
system with Duffing’s equation and an equation de-
scribing a parametric excitation circuit. Hence we may
observe various complicated behavior such as chaotic
state due to a period-doubling process of parametric
excitation, codimension two bifurcations, the coexis-
tence of several periodic oscillations which are cor-
related with jump and hysteresis behaviors and the
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fundamental, higher-harmonic and sub-harmonic res-
onances.

In particular we are interested in codimension two
bifurcations. In the neighborhood of a codimension
two bifurcation point the dynamical behavior exhibit-
s complicated features and some types of codimension
two bifurcations may relate to the generation of chaot-
ic states. Numerical analysis shows that new route to
chaos through a cascade of a codimension three bifur-
cation.
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Figure 1: A phase converter circuit.

II. METHOD OF ANALYSIS

Equations (1) are rewritten as:

&= f(t,x,A) (2)
In Egs. (1), f is periodic in ¢ with period 27
ft+2mz,\) = f(t,z,)) (3)

We assume that Egs. (1) has a solution z(t) =
o(t,x9,A) with initial condition zg: x(0) =
©(0,29,\) = xo. Since f has the period 27, we can
naturally define the Poincaré mapping T from the s-
tate space R* into itself:

Ty : R* — R*; zg — Th\(z0) = (2, 0, A) (4)

If a solution ¢(t, xg, A) is a periodic, then the point
is a fixed point of T):



Fx(x0) := 29 — Tx\(29) =0 (5)

Computation of a periodic solution of Eqgs. (1) has
now been reduced to find zp € R? satisfying Eq. (5).

The generic bifurcations of the periodic solution
are known as codimension one bifurcations: tangen-
t, period-doubling, Neimark-Sacker bifurcations. At a
bifurcation value of parameters, if a periodic solution
satisfies two bifurcation conditions, then the bifurca-
tion refers to as a codimension two bifurcation. The
degenerate bifurcation: D-type of branching observed
in the system which possess a symmetrical property
is also called codimension two bifurcation. These bi-
furcation phenomena can be traced out by solving the
fixed point equation and bifurcation condition simul-
taneously [1].

We use the notation xD™ (resp. ;I™) denoting a
type having even (resp. odd) number of characteris-
tic multipliers on the real axis (—oo,—1), k indicates
the number of characteristic multiplier outside the u-
nit circle in the complex plane, and m indicates m
periodic point of T.

III. RESULTS

Now we show some numerical results of bifurcation di-
agrams and behavior of the solutions observed in Egs.
(1). We use the following notations in bifurcation dia-
grams: G}', I;" and D] represent respectively tangen-
t, period-doubling bifurcation and D-type of branching
of m-periodic point and k denotes the number to dis-
tinguish several bifurcation sets of same period. In the
following we fix several parameters in Egs. (1) as

(a) o =1 =0.0, c3 = 1.0,

(b) k=0.1.

The reasons are as follows:

(a) We choose the same value in [1],

(b) We obtain 3-dimensional bifurcation diagram
shown in Fig. 2. When k is lager than 0.3, in-
tersection of period-doubling bifurcations disap-
pear. If k is less than 0.1, bifurcation structure
would be more complex.

We consider parameter plane for B and By.

In Fig. 3 a stable fixed point with = y = 0 exists
in the shaded region. By increasing the parameter B
along the line [, 2-periodic points with x = y = 0 are
generated by the period-doubling bifurcation I3, see
Fig. 4(a). This bifurcation with = y = 0 is therefore
as same as the bifurcation of Duffing’s equation shown
in [1]. Otherwise when B and By change along the
line Iz, the period-doubling bifurcation I generates
2-periodic points with zy # 0, see Fig. 4(b), which
corresponds to the parametric excitation phenomenon
in the original circuit. At circled points in Fig. 3 the

two period-doubling bifurcations IT and I3 intersect
which are called codimension two bifurcation of double
period-doubling bifurcations. In the neighborhood of
this point D-type of branchings D3 and D? necessarily
appear [2].

Figure 5 shows the detail bifurcation diagram of Fig.
3. In the figure we see successive codimension three b-
ifurcation which is intersection of D-type of branching
and period-doubling bifurcation. The mechanism of
them are as follows:

(1) Cascade of period-doubling bifurcations 1" (n =
1,2, 3) of periodic points with = y = 0 occur.
Egs. (1) reduces to Duffing’s equation of u and
v when x =y = 0.

(2) Under the influence of coupling term another
period-doubling bifurcation I3 appears. At the
intersecting points of I} and I3, codimension two
bifurcation is generated and D-type of branch-
ings: D? and D3 appear as mentioned above.

(4) D?" and I?" intersect at square marked points
which are called codimension three bifurcation-
s. In the neighborhood of these points, D-
type of branching of 2"+1- periodic points D2" "'
and period-doubling bifurcation of 2™-periodic
points IQQH necessarily appear, see Fig. 6. The
D-type of branching D%Ml and the next period-
doubling bifurcation T 12n+1 will intersect.

(5) By repeating (4) the successive codimension three
bifurcations occur.

In Fig. 7 we see that curves D*" and I?" forms a tree
branch. This pattern is called tree-like pattern [3] . A
similar tree-like pattern is found in a mean value de-
fined on a period-doubling cascade in one-dimensional
dynamical system. This property can be explained
by a renormalization of a function series on the cas-
cade [4]. In Fig. 7 we observe three types of phase
transitions, see Fig. 8. One of them is from a stable
periodic point to a chaotic attractor. Others are from
periodic points of saddle type. The resulting chaot-
ic states may have both stable and unstable invariant
sets. Hence the chaotic state can be called a chaotic
saddle and it is unstable.

IV. CONCLUDING REMARKS

We have investigated global properties of bifurcation
sets of periodic solutions observed in a phase convert-
er circuit. We observed chaotic states from 2-periodic
points generated by double period-doubling bifurca-
tions through a cascade of a codimension three bifur-
cation. The double period-doubling bifurcations are
naturally appear in a coupled system which remains
bifurcation structures of an uncoupled system. Fur-
ther research is needed to study a detailed mechanism



of

generating the double period-doubling bifurcations

and classification of the codimension three bifurcation.
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Figure 2: Bifurcation diagram in B— By —k space.
Dashed curves and circled points indi-
cate period-doubling bifurcations and
codimension two bifurcations, respec-
tively.
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Figure 3: Bifurcation diagram for Egs. (1). Open
circle indicate the codimension two b-
ifurcation called T P-bifurcation in [5].
From this point tangent bifurcation of
2-periodic points appear.
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Figure 4: Trajectories generated by the period-
doubling bifurcations: I} and I3. The
points marked e and the arrow indicate
the 2-periodic points of Poincaré map
and the direction of trajectory respec-
tively.



Figure 5:
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Detailed bifurcation diagram of Fig. 3

Two cascades of period-doubling b-
ifurcations are observed. The symbol-
s square indicate intersection of D-type
of branching and period-doubling bifur-

cation.

Figure 6: Manifolds of 2-periodic points M ? and
manifolds of 4-periodic points M*? in
the neighborhood of Ag: intersection
of period-doubling bifurcation and D-
type of branching. A indicates param-

eter plane.

x10!
45

Figure 7: Enlarged bifurcation diagram of Fig.5 .
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Figure 8: Schematic diagram of phase transitions
observed in Fig. 7. Bifurcations writ-
ten by italic letters and shades are cor-

respond to those of Fig. 7.



