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1 Introduction

In this paper, we investigate the bifurcations

of periodic solutions observed in coupled

Modified Bonhöffer-van der Pol (MBVP)

equations. Each oscillatory circuit is shown

Fig. 1 and is described by

Lk1

dik1
dt

= vk − Ek1

Lk2

dik2
dt

= vk − Ek2

Ck

dvk
dt

= −gk(vk)− ik1 − ik2

(1)

where the nonlinear conductance gk is de-

fined by

g(v) = −v + v3/3

In the MBVP equation, we observe various

phenomena such as oscillations with alter-

nately appearance of large and small am-

plitudes, many period-doubling cascades of

limit cycles, chaotic oscillations caused by

the infinite doubling process, and so on.

This system is considered as an oscillator

with three ports from which we can observe

the states of the oscillator: the state vari-

ables ik1, ik2 and vk are respectively observ-

able fromI1-port, I2-port, and V -port in Fig.

1. Combining these two identical oscilla-

tors through three ports by a resistor, we

can realize six kinds of oscillator networks:

these types of connections are symbolically

denoted by I1-I1, I2-I2, I1-I2, I1-V ,I2-V and

V -V .
Now we only consider V -V type connec-

tion, so the system equations are given by

L1

di11

dt
= v1 − E1 −R1i11

L2

di12

dt
= v1 − E2 −R2i12

C
dv1

dt
= −g(v1)− i11 − i12 −G0(v1 − v2)

L1

di21

dt
= v2 − E1 −R1i21 (2)

L2

di22

dt
= v2 − E2 −R2i22

C
dv2

dt
= −g(v2)− i21 − i22 −G0(v2 − v1)
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Figure 1: A modified BVP oscillator with three

ports: V -port(terminals a and a′),I1-

port(terminals b1 and b′) and I2-port

(terminals b2 and b′).
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2 Method of analysis

Equations (2) are rewritten as:

ẋ = f(x, λ) (3)

We assume that Eqs.(2) has a periodic solu-

tion with initial condition x0 := x(0), de-

noted by x(t) = ψ(t, 0, x0) with x(0) =

ψ(0, 0, x0) = x0. We define a Poincaré sec-

tion Π for the trajectory ψ(t, 0, x0), then the

Poincaré mapping Tλ is defined as

Tλ : Π → Π; x 7−→ ψ(τ, 0, x) (4)

where τ is the time taken for the path of

trajectory, which starts from x and ends at

firstly return point to Π.

If a solution ψ(t, 0, x0) is a periodic, then

the point x0 is a fixed point of Tλ:

Fλ(x
0) := x0 − Tλ(x

0) = 0 (5)

Computation of a periodic solution of Eqs.

(2) has now been reduced to find x0 ∈ R6

satisfying Eq. (5).

We have three types of generic bifurca-

tions (tangent, period-doubling, Hopf bifur-

cations) and a degenerate bifurcation (D-

type of branching) for the fixed point. D-

type of branching may appear in the system

which possess a symmetrical property. This

type of bifurcation occurs when a real eigen-

value passes through the point (1,0) in com-

plex plane. Then the bifurcation condition is

a degenerate case of the tangent bifurcation.

These bifurcation phenomena can be traced

out by solving the fixed point equation and

bifurcation condition simultaneously [3].
We use the notation kD

m (resp. kI
m) de-

noting a type having even (resp. odd) num-
ber of characteristic multipliers on the real
axis (−∞,−1), k indicates the number of
characteristic multiplier outside the unit cir-
cle in the complex plane, and m indicates m
periodic point of Tλ. If m = 1, it will be
omitted.

3 Results

Now we show some numerical results of bi-

furcation diagrams and behavior of the solu-

tions observed in Eqs. (2). In the following

we fix several parameters in Eqs. (2) as

R1 = R2 = 0.5, E1 = 0.2

L−1

1
= 0.4, L−1

2
= 0.1, G0 = 0.01

and consider parameter plane for C−1 and

E2.
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Figure 2: Bifurcation diagram of fixed point of Tλ

for Eqs. (2). Stable fixed points are

found in shaded portions.
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Figure 2(a) and (b) show the bifurcation

diagrams of Tλ for Eqs. (2). In these fig-

ures dotted line D, heavy line G, and light

line I indicate D-type of branching, tan-

gent and period-doubling bifurcations, re-

spectively. In Fig. 2 we observe several

codimension-two bifurcations:

(1) Intersection of period-doubling bifurca-

tions (called double period-doubling bi-

furcation).

(2) Intersection of period-doubling bifurca-

tion and D-type of branching.

(3) Intersection of tangent and period-

doubling bifurcation.

Figure 3 shows a schematically illustrated

one-parameter bifurcation diagram where

the abscissa is E2 and the ordinate is a norm

of state variables for the fixed point. In the

figure, the heavy and light curves, respec-

tively, represent stable and unstable fixed

points, and the circled point indicates a bi-

furcation whose type is indicated at the bot-

tom of the figure.

On the left half of line L2 in Fig. 2(b)
there are D-type branching, I2 and I3 bifur-
cations, see Fig. 3(b). From the line L2 as
C−1 increases, D-type of branching, I2 and
I3 bifurcations get closely and they intersect
at point (2) of Fig. 2(b). Then D-type of
branching and I2 bifurcation of original fixed
point exchange the order and I3 bifurcation
of fixed point generated by D-type of branch-
ing disappears, see Fig. 3(a). Because of ex-
changing order of D-type of branching and
I2 bifurcation, stable 2-period solution (resp.
fixed point) appears in Fig. 3(a) (resp. Fig.
3(b)).
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Figure 3: A schematic diagram for change of the

characteristics when E2 varies along

line (a) L1 (C−1 = 2.43), (b) L2

(C−1 = 2.20) and (c) L3 (C−1 = 2.10)

in Fig. 2(b) (ordinate r indicates a

norm of fixed point).

We now discuss the synchronization ob-
served in Fig. 3(c). Figure 4 shows the
waveforms corresponding to the parameter
points (a)–(d) in Fig. 3(c). At the point (a)
v1 and v2 are in-phase and stable. After D-
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type of branching, phase differences appear
(b) and increase gradually as E2 increases
(c), then the fixed points disappear by tan-
gent bifurcation. Note that v1 and v2 are
in-phase but unstable at the point (d).
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Figure 4: Waveforms of v1 and v2 of Eqs.(2)

where E2 = (a) 1.2484, (b) 1.2518, (c)

1.2558 and (d) 1.2558.

4 Concluding Remarks

We have investigated global properties of bi-
furcation sets of periodic solutions observed
in resistively coupled MBVP equation. We
obtain the parameter region in which the
in-phase limit cycle is stable. We found
new type of the codimension-two bifurca-
tion: double period-doubling bifurcation.
The analysis of the bifurcated doubling solu-
tions near this bifurcation is a future prob-
lem.
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