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Abstract— We investigate bifurcation and chaos
observed in coupled BVP neurons with external impul-
sive forces. Although the single neuron without the ex-
ternal force has only one equilibrium point, combining
these n (n ≥ 3) neurons unidirectionally in a ring, n-
phase periodic solutions are generated. Applying the
impulsive forces, successive period-doubling bifurca-
tions of the n-phase solution occur and chaotic states,
namely n-phase chaos, appear. When n = 2 and 3,
we find the parameter regions in which the switching
phenomena of burst firing are observed. Moreover, the
mechanisms of the switching phenomena are clarified
by numerical bifurcation analysis.

I. Introduction

Many investigators have studied various temporal pat-
terns of spikes observed in the brain [1–3]. Among such
firing patterns, synchronous firing of neurons in con-
nection with neuronal signal processing has attracted
much interest [4,5]. It is important to consider global
dynamics of networks composed of nonlinear neurons
in order to clarify not only mechanisms of synchronous
firing of neurons but also its functional roles.

In this paper we examine nonlinear dynamics and
bifurcations of unidirectionally coupled Bonhöffer van
der Pol (BVP) neurons with external impulsive forces.
The BVP equation is a well-known neuron model rep-
resenting the electrical behavior across a nerve mem-
brane and has been widely studied [6–10].

The model equation analyzed in this paper is de-
scribed as
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where δ(t) is the Dirac’s delta function, h and τ are
the amplitude and the period of the impulsive force,
respectively. The system parameters are fixed as

a = 0.7, b = 0.8, c = 3.0 (2)

for the occurrence of a stable equilibrium point in the
unforced system of Eq. (1).

Although the single neuron without the external
force has only one equilibrium point, combining these
n neurons unidirectionally in a ring, n-phase peri-
odic solutions are generated. Applying the impulsive
forces, successive period-doubling bifurcations of the
n-phase solution occur and chaotic states, namely n-
phase chaos, appear. When n = 2 and 3, we find the
parameter regions in which the switching phenomena
of burst firing are observed. Moreover, the mechanisms
of the switching phenomena are clarified by numerical
bifurcation analysis.

II. Method of Analysis

In this section we summarize the analysis method for
a bifurcation problem in a discontinuous system [11].

We describe the solution of Eq. (1) as

x(t) = ϕ(t, x0, y0, λ)
y(t) = φ(t, x0, y0, λ) (3)

where x, y ∈ Rn and λ ∈ Rm denote n-dimensional
states and an m-dimensional system parameter, re-
spectively; ϕ and φ satisfy initial values:

x(0) = ϕ(0, x0, y0, λ) = x0

y(0) = φ(0, x0, y0, λ) = y0.
(4)

Let us construct a Poincaré mapping correlated with
Eq. (1). Firstly, we define a mapping T1 which trans-
lates x-coordinate as

T1 : R2n → R2n (5)
(x0, y0) �→ (x1, y1) = T1(x0, y0) = (x0 − h, y0).

Next we define an ordinary stroboscopic mapping T2:

T2 : R2n → R2n

(x1, y1) �→ (x2, y2) = T2(x1, y1) (6)

where



x2 = ϕ(τ, x1, y1, λ)
y2 = φ(τ, x1, y1, λ). (7)

Then a Poincaré mapping T can be defined as the com-
position of T1 and T2:

T : R2n → R2n (8)
(x0, y0) �→ (x2, y2) = T (x0, y0) = T2 ◦ T1(x0, y0).

Note that T1 and T2 are differentiable so that T is also
differentiable.

Let a fixed point of T be u = (x, y) ∈ R2n. The
fixed point satisfies

x = ϕ(τ, x − h, y, λ)
y = φ(τ, x − h, y, λ). (9)

This fixed point of T corresponds to a periodic solution
of Eq. (1) with period τ (period of the impulsive force),
and similarly a p-periodic point of T corresponds to a
periodic solution with period pτ .

The characteristic equation of the fixed point u is
described by

det(µI − DT (u)) = 0 (10)

where I is identity matrix and DT (u) denotes the
derivative of T evaluated at u. The bifurcations of
the fixed point are given under the conditions:

(i) tangent bifurcation (µ = 1)

(ii) period-doubling bifurcation (µ = −1)

(iii) Neimark-Sacker bifurcation (µ = ejθ)

(iv) D-type of branching (or pitchfork bifurcation)
(µ = 1 and symmetrical property).

We can obtain bifurcation parameter sets of the fixed
point solving Eqs. (9) and (10) simultaneously [12].

In bifurcation diagrams tangent, period-doubling
and D-type of branching (pitchfork bifurcation) sets
are indicated by symbols G, I and D, respectively.

For oscillatory solutions we use symbols L and S
representing the continuation of pulses assigned by the
symbol L and non-pulses assigned by the symbol S.
More precisely we consider a wave of response as a
pulse if the minimum value of wave xi is less than
minus one [9].

III. Results

We consider bifurcation problems of Eq. (1) in param-
eter plane (ω, h), where ω = 2π/τ .

A. The case of n = 1

We show a bifurcation diagram of the single BVP neu-
ron with the external impulsive force in Fig. 1. In this
system we can observe the existence of a mean firing
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Figure 1: Bifurcation diagram. In each region denoted
by p, we can observe p-periodic solutions. The dynam-
ics is chaotic (or quasi-periodic) in the region colored
by black.
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Figure 2: Enlarged diagram of a part of Fig. 1(b).
Points marked by closed circle indicate codimension-
two bifurcation points.

rate as a monotone increasing function of a system pa-
rameter and various kinds of solutions: chaotic oscilla-
tion caused by successive period-doubling bifurcations,
quasi-periodic solutions generated by Neimark-Sacker
bifurcations and periodic solutions of various orders of
period [9].

B. The case of n = 2

Figure 1(b) shows a bifurcation diagram of two-
coupled BVP neurons. We can see that global bifur-
cation structure is similar to that of Fig. 1; however,
in Fig. 1 (b) chaotic (or quasi-periodic) solutions are
observed in a wider parameter range.

Figure 2 shows an enlarged diagram of a part of
Fig. 1(b). In the shaded region
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observe a stable LL (Fig. 3(a)) and SS (Fig. 3(b)) pe-
riodic solution, respectively. D-type of branching sets
DLL and DSS of the LL and the SS periodic solution,
respectively, appear as a result of coupling two iden-
tical neurons which causes the symmetrical property.
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(c) LS 2-periodic solution.

Figure 3: Periodic solutions observed in the shaded
regions of Fig. 2. Arrows and the points marked by
closed circles indicate the time direction of the trajec-
tory and the fixed point of Poincaré map, respectively.
(Left) Neuron 1. (Middle) Neuron 2. (Right) Neuron
1 vs. Neuron 2.
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Figure 4: Time series of burst firing synchronized in
the opposite phase. n = 2. ω = 0.63. h = 0.55.
W1 = −0.4. W2 = −0.4.

(Note that when n = 2, Eq. (1) is invariant under the
interchange of the state variables.) We observe a sta-
ble LS 2-periodic solution (Fig. 3(c)) in the shaded
region . By the symmetrical property of the sys-
tem a stable SL 2-periodic solution also exists in the
same parameter region.

Decreasing the parameter value of h from this area,
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Figure 5: Bifurcation diagram of three-phase solu-
tions. n = 3.
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Figure 6: Time series of chaos generated by successive
period-doubling bifurcations of a three-phase solution.
n = 3. ω = 0.38. h = 0.616. W1 = −0.4. W2 = −0.4.
W3 = −0.4.
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Figure 7: Time series of burst firing. ω = 0.688. h =
0.56. W1 = −0.4. W2 = −0.4. W3 = −0.4. n = 3.

the LS 2-periodic solution meets the period-doubling
bifurcation I2

LS and becomes a chaotic solution by suc-
cessive period-doubling bifurcations. By further de-
creasing of the value of h chaos as shown in Fig. 4 is
obtained. Considering the pulses of Fig. 4 it seems
that the burst firing is almost synchronized in the op-
posite phase. This burst firing can be observed stably



in a wide parameter range and also observed in the
system broken the symmetrical property.

C. The case of n = 3

The single BVP neuron without the external force has
only one stable equilibrium point. We know that cou-
pling these identical n (n ≥ 3) BVP neurons unidi-
rectionally, a stable n-phase periodic oscillation is ob-
served [13].

Therefore when n = 3 in Eq. (1), there exists a
three-phase solution. Figure 5 shows a bifurcation di-
agram of three-phase solutions. In Fig. 5 the tangent
bifurcation set G1 of the three-phase solution meets
the axis of h = 0 at ω � 0.388 which corresponds to
the natural frequency of the three-phase solution in the
unforced system (h = 0 in Eq. (1)). The stable three-
phase solution exists in the region shading by .
By increasing the value of h successive period-doubling
bifurcations (only the first bifurcation I1 is shown in
Fig. 5) occur and almost three-phase chaos as shown
in Fig. 6 is generated.

Figure 7 shows time series of SLL2 chaotic solution,
where SLL2 means that i, (i+1) and (i+2)-th (i mod
3) neurons generate zero, one and two pulses in one
period of the external force, respectively. For example,
between t � 250 and t � 600 the neuron 3 (x3) and 1
(x1) generate one and two pulses, respectively, in one
period of the external force, while the neuron 2 (x2)
does not generate any pulses.

IV. Concluding Remarks

We have investigated bifurcation and chaos observed in
coupled BVP neurons with external impulsive forces.
Although the single neuron without the external force
has only one equilibrium point, combining these n neu-
rons unidirectionally in a ring, n-phase periodic solu-
tions are generated. Applying the impulsive forces,
successive period-doubling bifurcations of the n-phase
solution occur and chaotic states, namely n-phase
chaos, appear. When n = 2 and 3, we find the pa-
rameter regions in which the switching phenomena of
burst firing are observed. Moreover, the mechanisms
of the switching phenomena are clarified by numerical
bifurcation analysis.

To analyze the case of a large number of coupled
neurons and to classify observed chaos using coeffi-
cient of variation of interspike intervals (ISI) [14] are
interesting problems open to the future.

Acknowledgments

H. Kitajima would like to thank Prof. K. Aihara of
the University of Tokyo and Dr. T. Yoshinaga of the
University of Tokushima for their helpful comments.
This work was partially supported by the Foundation
for C&C Promotion.

References
[1] K. Aihara and G. Matsumoto, “Chaotic oscillations and

bifurcations in squid giant axons,” in Chaos, ed. by A.V.
Holden, Manchester University Press, Manchester and
Princeton University Press, Princeton, pp.257–269, 1986.

[2] J.P. Segundo, M. Stiber and J.-F. Vibert, “Synaptic cod-
ing of spike trains,” in The Handbook of Brain Theory and
Neural Networks, ed. M.A. Arbib, The MIT Press, Cam-
bridge, pp.953–956, 1995

[3] J. Bargas and E. Galarraga, “Ion channels : keys to neu-
ronal specialization,” in The Handbook of Brain Theory
and Neural Networks, ed. M.A. Arbib, The MIT Press,
Cambridge, pp.496–501, 1995

[4] S.K. Han, S.H. Park, T.G. Yim, S. Kim and S. Kim,
“Chaotic bursting behavior of coupled neural oscillators,”
Int. J. Bifurcation and Chaos, vol.7, no.4, pp.877–888.
1997

[5] S.G. Lee, S. Kim, and H. Kook, “Synchrony and cluster-
ing in two and three synaptically coupled Hodgkin-Huxley
neurons with time delay,” Int. J. Bifurcation and Chaos,
vol.7, no.4, pp.889–896. 1997

[6] B. Barnes and R. Grimshaw, “Numerical studies of the
periodically forced Bonhoeffer van der Pol system,” Int.
J. Bifurcation and Chaos, vol.7, no.12, pp.2653–2689, Dec.
1997.

[7] S. Doi and S. Sato, “The global bifurcation structure of
the BVP neuronal model driven by periodic pulse trains,”
Mathematical Biosciences, vol.125, pp.229–250, 1995.

[8] T. Nomura, S. Sato, S. Doi, J.P. Segundo and M.D. Stiber,
“Global Bifurcation Structure of a Bonhoeffer-van der Pol
Oscillator Driven by Periodic Pulse Trains,” Biological Cy-
bernetics, vol.72, pp.55–67, 1994.

[9] T. Yoshinaga and H. Kawakami, “Bifurcation in a
BVP Equation with Periodic Impulsive Force,” Proc.
NOLTA’95, pp.331–334, 1995.

[10] K. Tsumoto, T. Yoshinaga and H. Kawakami, “Bifurca-
tion of periodic solutions observed in Two BVP Neurons
coupled by synaptic transmission,” Technical Report of
IEICE, NLP99-43, pp.115–122, June 1999.

[11] O. Morimoto and H. Kawakami, “Bifurcation diagram
of a BVP equation with impulsive external force,” Proc.
NOLTA’94, pp.205–208, 1994.

[12] H. Kawakami, “Bifurcation of periodic responses in forced
dynamic nonlinear circuits: computation of bifurcation
values of the system parameters,” IEEE Trans. Circuits
& Syst. vol.CAS-31, no.3, pp.248–260 March 1984.

[13] H. Kitajima and H. Kawakami, “Bifurcation of a unidirec-
tionally coupled oscillator,” Technical Report of IEICE,
NLP96-144, pp.25–32, Feb. 1997.

[14] W.R. Softky and C. Koch, “The Highly Irregular Firing of
Cortical Cells Is Inconsistent with Temporal Integration of
Random EPSPs,” Neuroscience, 13(1), pp.334–350, Jan.
1993.


