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Abstract— We investigate the influence of
noise on the synchronization between the spik-
ing activities of neurons with external impulsive
forces. By choosing the appropriate noise inten-
sity and a number of neurons subject to noise we
find that small noise can be a promoter of syn-
chronization phenomena in neural activities.

I. INTRODUCTION

A neuron, or the fundamental element of the
brain, generates various temporal patterns of
spikes. Among such firing patterns, synchronous
firing of neurons in connection with neural signal
processing has attracted much interest(see [1] and
references therein). In particular, the influence of
noise on the synchronization [2] are studied for
several types of neurons:e.g. Hodgkin-Huxley [3—
5] and FitzHugh-Nagumo [6, 7], because real neu-
rons can operate accurately even in a noisy en-
vironment. However, in these studies, to obtain
synchronous firing patterns very large noise inten-
sity is needed.

In this paper we consider globally coupled
FitzHugh-Nagumo(FHN) neurons with external
By choos-
ing appropriate noise intensity and a number of
neurons subject to noise we find that small noise
can be a promoter of synchronization phenomena

noise and periodic impulsive forces.

in neural activities.

II. SYsTEM EQUATION

The system equation of electrically (gap junc-
tion) coupled FHN neurons is described as
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Fig. 1. The parameter region in which synchronous
firing is observed. D; = 0.

where ¢ indicates neuron number, §(¢) is the
Dirac’s delta function, A and w are the amplitude
and the angular frequency of the impulsive force,
respectively, w is the coupling coefficient, &;(¢)
is the Gaussian white noise with < &;(¢) &(¢') >
=6(t — t') and D; denotes the noise intensity. We
use the different noise for each neuron. To gen-
erate a random number we use Mersenne Twister
method [8]. The values of system parameters are
fixed as

a=07,b=08, c=30,w=—-03 (2)
for the occurrence of a stable equilibrium point
in the system of Eq. (1) with A = 0 and D; = 0.
Equation (1) is numerically integrated by using
stochastic Euler method [9,10] with the time step
At = 27/1024.

II1I. RESULTS

In Fig. 1 we show the results of counting a num-
ber of neurons with synchronous firing in the pa-
rameter space (w, h). In the darker region we
observe more synchronous firing. In the white re-
gion, coupled neurons never fire, because it is not
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Fig. 2. Time series after the transient time (1024 x

1000 steps) in Eq. (1) with D = 0, w = 0.436 and
h = 0.592.

enough impulsive stimulus. In order to obtain
more synchronous firing, we inject the noise &;(¢)
to some FHN neurons in the coupled system. A
number of neurons subject to the noise is abbrevi-
ated to “#NN”. We choose three parameter sets
of w and h from Fig. 1 for the occurrence of few
synchronous firing and after adding the noise we
study the effect of the noise on the synchroniza-

tion.

A. Case(1)

We set the values of parameters (w, h) as
(0.436, 0.592). In this parameter setting the
raster records of all the firing events in the cou-
pled system without the noise is shown in Fig.
2. From this figure we can see that only three
neurons (neuron 17 to 19) generate spikes. After
adding the noise we calculate coefficient of varia-
tion (C,) of interspike interval (ISI) for neuron 1
and count a number of neurons with synchronized
firing by changing the noise intensity and #NN,
see Fig. 3. Thick and thin solid curves indicate
the number of neurons with synchronized firing
and C,, respectively.

In Fig. 3(a) adding the small intensity noise
(D=0.07) to only one neuron (neuron 20), com-
plete synchronized firing of 17 neurons is ob-
served. Figure 4(a) shows firing events as time
series data at D=0.07 and #NN=1. From Fig.
3 we can see that when the noise intensity is less
than 0.1, the number of neurons with synchro-
nized firing and C), are increased simultaneously.
On the other hand for large intensity of the noise
all neurons except noise-injected neurons produce
synchronous firing and C, converges to about 1
which shows irregular spikes [11,12]. In Fig. 4(b)
we show the temporal firing pattern at D=0.4
and #NN=3.

At this noise level all neurons
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Fig. 3. Coeflicient of variation (C,) and the number
of neurons with synchronous firing as a function
of D; observed in Eq. (1) with w = 0.436 and
h = 0.592. After a transient time we calculate
them using 40,000 time steps data.

except noise-injected neurons are synchronized.
This synchronous firing pattern is robust against
adding the small intensity noise (D;=0.001) to
these synchronized 17 neurons, see Fig. 4(c).

B. Case(2)

In the second case we set the values of param-
eters (w, h) as (0.4, 0.585). Traveling wave is ob-
served when D=0 shown in Fig. 5(a). The order of
firing is controllable by changing initial conditions
of z;. Figure 6 shows (), and the number of neu-
rons with synchronous firing. For small value of
the noise intensity C, is almost zero which means
regular spikes. In this case also the increase in
C, and the number of neurons with synchronous
firing occur at similar values of the noise inten-
sity. An example of complete synchronized neu-
rons due to an appropriate amount of the noise is
shown in Fig. 5(b).
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Fig. 5.

S
[\l

Vel

o 00 [ ] [ 1]
HH T THEH
i [7e)

(=)

11
IoqUINU UOINAU

200 300 400

time

100

SUOINAU PAZIUOIYOUASH
S O N
N — — <+ [e)]
T T 17T T 17T 171
>
C —
1 1 1 1 1 1
A IS A A ) B
— oS O O O
D
—~~~ e
~ .2
=) 5]
9W q =]
(=1}
S
o = Y
— o ﬁ
0 gk
= o5
<+ T
s 24
T
‘o o MM
S £3
<
g =°
s @ |
= w
1H =] o
T g8
= nM
—
1 2%
= Mﬂ
= .
S o ;Mv )
o ml w .S N—
I < 8 @
< (R =) 3
S <Y §E S
T @ .
e O

04 06 08
noise intensity D

0.2

0

In the third case we set the values of parame-
ters (w, h) as (0.94, 0.594). Even in the case of
the absence of the noise neurons produce irregular

spikes, see Fig. 7(a). Figure 8(a)

1.
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shows that we

cannot obtain complete synchronization only by
adding the noise to one neuron. By increasing the

number of neurons subject to the noise and the

noise intensity, complete synchronous firing can
be achieved as shown in Fig. 8(b). Although it
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C, and the number of neurons with syn-
chronous firing as a function of D; observed in

Eq. (1) with w = 0.4 and h = 0.585.

Fig. 6.

We have investigated the influence of noise on
synchronous firing in globally coupled FHN neu-

We decided

the three values of the amplitude and the angu-

rons with external impulsive force.
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(b) D = 1.0 and #NN=3.

Fig. 7. Temporal firing pattern observed in Eq. (1)
with w = 0.94 and h = 0.594.

lar frequency of the impulsive force. In each case
an appropriate amount of noise (intensity and the
number of neurons subject to the noise) can syn-
chronize firing of neurons. This is extension of
noise-induced synchronization [9, 13, 14], because
the neurons without the noise are indirectly influ-
enced by the noise through the electrical coupling.
We calculated C, and the number of neurons with
synchronous firing as a function of the noise inten-
sity and found that for the small noise intensity
they are increased simultaneously. It is an open
problem to study a system of synaptically coupled
neurons containing a time delay.
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