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ABSTRACT

We investigate bifurcation and chaos observed in coupled
BVP neurons with external impulsive forces. Although the
single neuron without the external force has only one equi-
librium point, combining these n (n ≥ 3) neurons unidi-
rectionally in a ring, n-phase periodic solutions are gen-
erated. Applying the impulsive forces, successive period-
doubling bifurcations of the n-phase solution occur and
chaotic states, namely n-phase chaos, appear. When n = 2
and 3, we find the parameter regions in which the switch-
ing phenomena of burst firing are observed. Moreover, the
mechanisms of the switching phenomena are clarified by
numerical bifurcation analysis.

1 Introduction

A neuron, or the fundamental element of the brain, gener-
ates various temporal patterns of spikes [1,2]. Among such
firing patterns, synchronous firing of neurons in connection
with neuronal signal processing has attracted much inter-
est [3, 4]. It is important to consider global dynamics of
networks composed of nonlinear neurons in order to clarify
not only mechanisms of synchronous firing of neurons but
also its functional roles [5].

In this paper we examine nonlinear dynamics and bi-
furcations of unidirectionally coupled Bonhöffer van der Pol
(BVP or FitzHugh-Nagumo) neurons with external impul-
sive forces. The BVP or FitzHugh-Nagumo equation is a
well-known neuron model representing the electrical behav-
ior across a nerve membrane and has been widely stud-
ied [6–10].

The model equation analyzed in this paper is described
as
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where δ(t) is the Dirac’s delta function, h and τ are the am-
plitude and the period of the impulsive force, respectively.
The system parameters are fixed as

a = 0.7, b = 0.8, c = 3.0 (2)

for the occurrence of a stable equilibrium point in the un-
forced system of Eq. (1).

Although the single neuron without the external force
has only one equilibrium point, combining these n (n ≥ 3)
neurons unidirectionally in a ring, n-phase periodic solu-
tions are generated. Applying the impulsive forces, suc-
cessive period-doubling bifurcations of the n-phase solu-
tion occur and chaotic states, namely n-phase chaos, ap-
pear. When n = 2 and 3, we find the parameter regions in
which the switching phenomena of burst firing are observed.
Moreover, the mechanisms of the switching phenomena are
clarified by numerical bifurcation analysis.

2 Method of Analysis

In this section we summarize the analysis method for a bi-
furcation problem in a discontinuous system [11].

We describe the solution of Eq. (1) as

x(t) = ϕ(t, x0, y0, λ)
y(t) = φ(t, x0, y0, λ)

(3)

where x, y ∈ Rn and λ ∈ Rm denote n-dimensional states
and an m-dimensional system parameter, respectively; ϕ
and φ satisfy initial values:

x(0) = ϕ(0, x0, y0, λ) = x0

y(0) = φ(0, x0, y0, λ) = y0.
(4)

Let us construct a Poincaré mapping correlated with Eq. (1).
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Figure 1: Schematic diagram of a trajectory observed in
Eq. (1).



Firstly, we define a mapping T1 which the translates the x-
coordinate as

T1 : R2n → R2n (5)

(x0, y0) �→ (x1, y1) = T1(x
0, y0) = (x0 − h, y0).

Next we define an ordinary stroboscopic mapping T2:

T2 : R2n → R2n

(x1, y1 ) �→ (x2, y2) = T2(x
1, y1)

(6)

where
x2 = ϕ(τ, x1, y1, λ)
y2 = φ(τ, x1, y1, λ).

(7)

Then a Poincaré mapping T can be defined as the compo-
sition of T1 and T2:

T : R2n → R2n (8)

(x0, y0) �→ (x2, y2) = T (x0, y0) = T2 ◦ T1(x
0, y0).

Note that T1 and T2 are differentiable so that T is also
differentiable. A schematic diagram of a trajectory observed
in Eq. (1) is shown in Fig. 1.

We assume that Eq. (1) has a fixed point of T . Let the
fixed point be u = (x, y) ∈ R2n. The fixed point satisfies

x = ϕ(τ, x − h, y, λ)
y = φ(τ, x − h, y, λ).

(9)

This fixed point of T corresponds to a periodic solution of
Eq. (1) with period τ (period of the impulsive force), and
similarly a p-periodic point of T corresponds to a periodic
solution with period pτ .

The characteristic equation of the fixed point u is de-
scribed by

det(µI − DT (u)) = 0 (10)

where I is identity matrix and DT (u) denotes the derivative
of T evaluated at u. The bifurcations of the fixed point are
given under the conditions:

(i) tangent bifurcation (µ = 1)

(ii) period-doubling bifurcation (µ = −1)

(iii) Neimark-Sacker bifurcation (µ = ejθ)

(iv) D-type of branching (or pitchfork bifurcation)
(µ = 1 and symmetrical property).

We can obtain bifurcation parameter sets of the fixed point
solving Eqs. (9) and (10) simultaneously [12].

In a bifurcation diagram shown in Sec. 3, tangent, period-
doubling, Neimark-Sacker bifurcation and D-type of branch-
ing (pitchfork bifurcation) sets of m-periodic point are indi-
cated, respectively, by symbols kGm, kIm, kNm and kDm

where k denotes the number to distinguish several bifurca-
tion sets of the same period.

For oscillatory solutions we use symbols L and S repre-
senting the continuation of pulses assigned by the symbol
L and non-pulses assigned by the symbol S. More precisely
we consider a wave of response as a pulse if the maximum
value of wave xi is more than one [9].
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Figure 2: Bifurcation diagram of Eq. (1) with n = 2 and
W1 = W2 = −0.4. Points marked by closed circle indicate
codimension-two bifurcation points. Chaotic responses are
observed in the region shaded by and . White
regions correspond to periodic solutions.

3 Results

We consider bifurcation problems of Eq. (1) in parameter
plane (ω, h), where ω = 2π/τ .

3.1 The case of n = 2

Figure 2 shows a bifurcation diagram of Eq. (1) with n = 2.
In the shaded region
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a stable LL (Fig. 3(a)), SS periodic solution (Fig. 3(b)) and
a stable LS 2-periodic solution (Fig. 3(c)), respectively. D-
type of branching sets DLL and DSS of the LL and the SS
periodic solution, respectively, appear as a result of cou-
pling two identical neurons which causes the symmetrical
property. (Note that when n = 2, Eq. (1) is invariant under
the interchange of the state variables.)

In the region shaded by , the switching chaos as
shown in Fig. 4 is observed. Considering the pulses of Fig. 4
it seems that the burst firing is almost synchronized in the
opposite phase. We study the mechanism of generation of
the switching chaos by numerical bifurcation analysis. In
Fig. 2, there exist several routes to the switching chaos: e.g.
(the circled numbers correspond to those of Fig. 2)

©1 intermittency route: the SS periodic solution becomes
unstable as a result of the pitchfork bifurcation DSS

and the switching chaos appears,

©2 successive period-doubling bifurcations I: the
asymmetrical SS solution generated by DSS meets
successive period-doubling bifurcations (in Fig. 2 we
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Figure 3: Periodic solutions observed in the shaded regions
(a)
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������ and (c) of Fig. 2. Arrows and

the points marked by closed circles indicate the time direc-
tion of the trajectory and the fixed point of the Poincaré
map T , respectively. (Left) Neuron 1. (Middle) Neuron 2.
(Right) Neuron 1 vs. Neuron 2.

only show two period-doubling bifurcations 1ISS and
I2

SS) and the generated two chaotic attractors merge
into one,

©3 successive period-doubling bifurcations II: the SL
2-periodic solution pass through the successive period-
doubling bifurcations (in Fig. 2 the first period-doubling
bifurcation I2

LS is shown) and the switching chaos is
generated,

©4 collapse of quasi-periodic solution: the 2-pe-
riodic SS solution generated by 2ISS meets Nei-
mark-Sacker bifurcation N2

SS and the generated quasi-
periodic solution collapses.

This burst firing can be observed stably in a wide pa-
rameter range and also observed in the system broken the
symmetrical property.

3.2 The case of n = 3

The single BVP neuron without the external force has only
one stable equilibrium point. We know that coupling these
identical n (n ≥ 3) BVP neurons unidirectionally, a stable
n-phase periodic oscillation is observed [13].

Therefore when n = 3 in Eq. (1), there exists a three-
phase solution. The stable three-phase solution meets suc-
cessive period-doubling bifurcations and almost three-phase
chaos as shown in Fig. 5 is generated.
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Figure 4: Time series of burst firing. n = 2. ω = 0.63.
h = 0.55. W1 = −0.4. W2 = −0.4.
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Figure 5: Time series of chaos generated by successive
period-doubling bifurcations of a three-phase solution. n =
3. ω = 0.38. h = 0.616. W1 = −0.4. W2 = −0.4.
W3 = −0.4.
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Figure 6: Time series of burst firing. n = 3. ω = 0.423.
h = 0.5626. W1 = −0.4. W2 = −0.4. W3 = −0.4.
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Figure 8: Time series of burst firing. n = 3. ω = 0.34.
h = 0.5648. W1 = −0.4. W2 = −0.4. W3 = −0.4.

Figure 6 shows time series of LSS-type switching chaos,
where LSS means that i, (i + 1) and (i + 2)-th (i = 1, 2, 3,
(i+1) and (i + 2) mod 3) neurons generate one, zero and
zero pulse in one period of the external force, respectively.
For example, between t = 0 and t � 800 the neuron 2
(x2) generates one pulse in one period of the external force,
while the neuron 1 (x1) and the neuron 3 (x3) do not gen-
erate any pulses. The bifurcation mechanism of generating
the switching chaos is shown in Fig. 7. The LSS-periodic
solution meets successive period-doubling bifurcations (by
the symmetrical property of Eq. (1), the period-doubling
bifurcations of SLS and SSL-periodic solutions occur at
the same parameter values) and the LSS, SLS and SSL
chaotic solutions appear. After the crisis of these three
types of chaotic solutions, switching chaos is generated. In
Fig. 8 we show LLS-type switching chaos generated by the
bifurcation mechanism similar to that of LSS-type switch-
ing chaos.

4 Concluding Remarks

We have investigated bifurcation and chaos observed in cou-
pled BVP neurons with external impulsive forces. Although
the single neuron without the external force has only one
equilibrium point, combining these n neurons unidirection-

ally in a ring, n-phase periodic solutions are generated. Ap-
plying the impulsive forces, successive period-doubling bi-
furcations of the n-phase solution occur and chaotic states,
namely n-phase chaos, appear. When n = 2 and 3, we found
the parameter regions in which the switching phenomena of
burst firing are observed. Moreover, the mechanisms of the
switching phenomena are clarified by numerical bifurcation
analysis.

These switching phenomena were observed in the lob-
ster stomatogastric ganglion [14]. Therefore it is interesting
open problems to study the mechanisms of generating such
phenomena in asymmetrical neural networks.
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