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We investigate the phase transition between solutions with distinct symmetrical property ob-
served in a system of coupled three-oscillators with hard characteristics and state coupling.
By a symmetry-breaking bifurcation, a symmetrical in-phase solution bifurcates into synchro-
nized modes with a partially in-phase solution and an almost in-phase solution. Moreover,
by using the definition of symmetrical and asymmetrical three-phase solutions, we confirmed
the existence of a stable symmetrical three-phase quasi-periodic solution and an asymmetrical
three-phase chaotic solution in the coupled system.
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1. Introduction

Systems of coupled oscillators are widely used as
models for biological rhythmic oscillations such as
human circadian rhythms [Kronauer et al., 1982;
Brown et al., 2000], finger movements [Hirao et al.,
1996], animal locomotion [Collins & Stewart, 1993;
Golubitsky & Stewart, 1999; Buono & Golubitsky,
2001], swarms of fireflies that flash in synchrony
[Winfree, 1980; Kousaka et al., 1998], synchronous
firing of cardiac pacemaker cells [Winfree, 1980;
Sousa et al., 1994], neural networks [Skinner et al.,
1994; Han et al., 1997; Medvedev & Kopell, 2000],
and so on.

Using these coupled oscillator models, many
investigators have studied the mechanism of
generation of synchronous oscillation and phase
transitions between distinct oscillatory modes.
From the standpoint of bifurcation, the former
and the latter correspond respectively to the Hopf

bifurcation of an equilibrium point (or the tan-
gent bifurcation of a periodic solution) and to
the pitchfork bifurcation (or the period-doubling
bifurcation) of a periodic solution. Using a group
theoretic discussion applied to the coupled os-
cillators, we can derive some general theorems
concerning the bifurcations of equilibrium points
and periodic solutions [Golubitsky et al., 1988].

Our research group has investigated a sys-
tem of a small number of coupled oscillators,
aiming to classify periodic solutions according to
their symmetrical properties, and to clarify the
phase transition between classified periodic solu-
tions [Papy & Kawakami, 1995a, 1995b; Kitajima
& Kawakami, 1998]. We consider that the case of
a small number of oscillators is a prototype model-
ing for understanding the phenomena in the case
of a large number of oscillators. Shiohama and
Kawakami [1998] studied a system of coupled three
oscillators through inductors in a ring. The ring
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structure is one of the simplest cases of coupled
oscillators [Friesen & Stent, 1977; Tsutsumi &
Matsumoto, 1984; Ermentrout, 1985], and “three”
is the simplest case of the ring structure. They
confirmed four kinds of stable periodic solutions and
also showed chaotic oscillations caused by successive
period-doubling bifurcations.

We have also studied a system of coupled
three-oscillators with hard characteristics and
state coupling, to obtain more stable states. The
single oscillator, called a hard oscillator, has a stable
equilibrium point and a stable periodic solution.
We have classified the periodic solutions into twelve
kinds according to their symmetrical property, and
confirmed nine kinds of stable periodic solutions
[Yamakawa et al., 1999].

In this paper, we further investigate the phase
transition between solutions with distinct symmet-
rical properties. Moreover, by using the definition
of three-phase solutions, we confirmed the existence
of a stable symmetrical three-phase quasi-periodic
solution and an asymmetrical three-phase chaotic
solution. To the best of our knowledge, there is no
paper describing an n-phase (n ≥ 3) chaotic solu-
tion based on the common mathematical definition.
We consider that these results give useful informa-
tion for the design of a coupled oscillator system.

2. Preliminaries

2.1. System equation

Consider a system of coupled three-oscillators in a
ring, as shown in Fig. 1. After normalization of
the state variables and parameters, we obtain the
following circuit equations:

dxi
dt

= −αxi − βx3
i − γx5

i + ωxi+1

+ω0(xi+5 − xi+8)

dxi+1

dt
= −ωxi − σxi+1

dxi+2

dt
= −σ0xi+2 + ω0(xi+3 − xi+6)

(i = 1, 4, 7, x10 ≡ x1, x12 ≡ x3, x13 ≡ x4,

x15 ≡ x6),

(1)

where

x1 =
√
Cv1, x2 =

√
Li1, x3 =

√
L0i4 ,

x4 =
√
Cv2, x5 =

√
Li2, x6 =

√
L0i5 ,

x7 =
√
Cv3, x8 =

√
Li3, x9 =

√
L0i6 ,

(2)
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Fig. 1. Circuit diagram. The characteristics of the boxed
nonlinear conductance are assumed as ig(vi) = a1vi + a3v
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We define the permutation matrix P , the flip
matrix Q, and the inversion matrix Ī9, as follows:

P =


0 1 0

0 0 1

1 0 0

⊗ I3 ,

Q =


1 0 0

0 0 1

0 1 0

⊗


1 0 0

0 1 0

0 0 −1

 , I9 = −I9 ,

(3)

where In denotes the n×n identity matrix. We also
define a matrix group:

Γ = {I9, P, P
2, Q,QP,QP 2,I9,I9P,I9P

2,

I9Q,I9QP,I9QP
2}.

(4)

Then, Eq. (1) is equivariant to a new system under
the following coordinate transform:

x 7−→ gx,∀g ∈ Γ . (5)

Note that Γ has a dihedral subgroup:

D3 = {I9, P, P
2, Q, QP, QP 2}, (6)
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and D3 has a cyclic subgroup:

C3 = {I9, P, P
2} (7)

together with three conjugate subgroups:

C2 = {I9, Q}, {I9, QP}, {I9, QP
2} . (8)

2.2. Poincaré mapping

We assume that the solution of Eq. (1) is

x(t) = ϕ(t, x0, λ) , (9)

where x0 is an initial state:

ϕ(0, x0, λ) = x0 , (10)

and λ is a parameter. We define a Poincaré sec-
tion Π for the trajectory ϕ(t, x0, λ). Then, the
Poincaré mapping Tλ is

Tλ : Π −→ Π; x0 7−→ ϕ(τ, x0, λ) , (11)

where τ is the time instant taken for the path of tra-
jectory, which starts from x0 and ends at the first
return point to Π.

2.3. Definition of symmetrical and
asymmetrical three-phase
solutions

We define a mapping TP as

TP : Π −→ Π; x0 7−→ P−1ϕ(τ, x0, λ) (12)

and a set Σ(x0) as

Σ(x0) = {T kP (x0) | k ∈ N} . (13)

If the set Σ(x0) is invariant under the mapping TP :

TP (Σ(x0)) = Σ(x0) (14)

and is connected, then the solution ϕ(t, x0, λ)
is called an asymmetrical three-phase solution
[Fiedler, 1988; Katsuta, 1995]. When the matrix
PI9 is used instead of P , the solution is called a
symmetrical three-phase solution, where “symmet-
rical” indicates that it is invariant under the inver-
sion of state variables.

Definitions of other symmetrical solutions, ob-
served in a system with the dihedral group D3,
can be found from [Katsuta, 1995; Shiohama &
Kawakami 1998; Yamakawa et al., 1999].

3. Main Results

We fix the parameter values of Eq. (1) as

β = −1.4, γ = 0.4,

σ = 0.5, σ0 = 0.5 .
(15)

In the bifurcation diagrams shown in this section,
the tangent, period-doubling, Neimark–Sacker bi-
furcation, and D-type of branching (pitchfork bifur-
cation) sets of an m-periodic solution, are indicated
respectively by symbols Gmj , Imj , Nm

j and Dm
j ,

where j denotes the number that distinguishes
different bifurcation sets of the same period. If
m = 1, it will be omitted.

3.1. Transition between distinct
oscillatory modes

Figure 2 shows a bifurcation diagram of periodic
solutions on the parameter plane (ω0,α). In the

region shaded by � � � � �
� � � � �

and � � � � �
� � � � �

, respectively, a
stable symmetrical in-phase solution and a symmet-
rical partially anti-phase solution exist.

By the degenerate symmetry-breaking pitch-
fork bifurcation (satisfying double pitchfork
bifurcation conditions) D1, the symmetrical in-
phase solution bifurcates into a partially in-phase
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Fig. 2. Bifurcation diagram observed in Eq. (1) with ω =
1.0. The subscripts 1 and 2 of D denote the bifurcation sets
of the symmetrical in-phase and the symmetrical partially
anti-phase periodic solution, respectively.
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Fig. 3. Transition between solutions with distinct symmet-
rical property. Three small squares under the name of the
solution indicate the trajectory of each solution; (left) x1 ver-
sus x4, (middle) x4 versus x7, (right) x7 versus x1.
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Fig. 4. Bifurcation diagram of symmetrical three-phase
periodic solutions observed in Eq. (1) with ω = 1.0.

solution and an almost in-phase solution. By
the pitchfork bifurcation D2 of the symmetrical
partially anti-phase solution, I9-invariant solution
(symmetry with respect to the inversion of state
variables) appears.

A summary of the phase transition between so-
lutions with distinct symmetrical property obtained
in this paper and those obtained in [Yamakawa
et al., 1999] is shown in Fig. 3.

3.2. Symmetrical three-phase
quasi-periodic solution

A bifurcation diagram of a symmetrical three-phase
periodic solution is shown in Fig. 4. In the shaded

�

�

� �

� �

�

� � �

Fig. 5. Symmetrical three-phase quasi-periodic solution:
α = 0.4, ω0 = 0.5, ω = 1.0.

� �

� �

(a) (b)Tλ TPI9

Fig. 6. Points of (a) Poincaré mapping Tλ and (b) the
mapping TPI9 for the symmetrical three-phase quasi-periodic
solution.

region we observed a stable symmetrical
three-phase periodic solution. By decreasing the
value of ω0 from this region, the Neimark–Sacker
bifurcation N1 occurs and the quasi-periodic solu-
tion (Fig. 5) is generated.

Figure 6 shows points of the Poincaré mapping
Tλ and the mapping TPI9

. From Fig. 6, we can see
that this quasi-periodic solution satisfies the defini-
tion of symmetrical three-phase given in Sec. 2.3;
therefore, Fig. 5 shows a symmetrical three-phase
quasi-periodic solution.

3.3. Asymmetrical three-phase
quasi-periodic and chaotic
solutions

Figure 7 shows a bifurcation diagram of the three-
phase periodic solutions observed in Eq. (1) with
ω = 0.5. We observed a stable three-phase solution
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Fig. 7. Bifurcation diagram of asymmetrical three-phase pe-
riodic solutions observed in Eq. (1) with ω = 0.5.
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Fig. 8. Three-phase quasi-periodic solution: α = 0.497,
ω0 = 0.6, ω = 0.5.

in the region shaded by . By the Neimark–
Sacker bifurcation N2, the stable three-phase
solution becomes unstable and the quasi-periodic
solution (Fig. 8) is generated. This quasi-periodic
solution does not satisfy the definition of sym-
metrical three-phase [Fig. 9(b)]; however, it sat-
isfies the definition of asymmetrical three-phase
[Fig. 9(c)]. Thus, we call it a three-phase quasi-
periodic solution.

In Fig. 7, the tangent bifurcation sets G2
1 and

G2
2 meet the Neimark–Sacker bifurcation set as cusp

points at the points marked by open circles (the
argument of the characteristic multipliers equals π
radian). We only show the tangent bifurcation set
of two-periodic solutions. However, the tangent bi-
furcation sets of various kinds of periodic solutions

7x

x 8

(a) (b)
7x

x 8

7x

x 8

(c)Tλ TPI9
TP

Fig. 9. Points of (a) Poincaré mapping Tλ, (b) the map-
ping TPI9 , and (c) the mapping TP for the three-phase quasi-
periodic solution.
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Fig. 10. Enlarged bifurcation diagram of a part of Fig. 7.
The points marked by©1 , ©2 and ©3 indicate codimension-two
bifurcation point, called TP bifurcation.

were also observed [Mihara & Kawakami, 1996;
Kitajima & Kawakami, 1997], which are called the
Arnold tongues [Arnold, 1983].

Figure 10 shows an enlarged bifurcation dia-
gram of a part of Fig. 7. In the region surrounded by
the tangent bifurcation sets G2

1 and G2
2, the period-

doubling bifurcation set I2 of a two-periodic solu-
tion, generated by the tangent bifurcations, exist.
The intersecting points of the tangent bifurcation
sets and the period-doubling set are codimension-
two bifurcation points, called the TP bifurcation
[Yoshinaga & Kawakami, 1995]. From the points
marked by ©1 , the tangent bifurcation sets G4

1 and
G4

2 of four-periodic solutions appear. At the points
marked by©2 , codimension-two bifurcation (TP bi-
furcation) occur again via the intersection of G4

1,
G4

2 and I4. Moreover, by the same mechanism,
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Fig. 11. Schematic bifurcation diagram of successive TP
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Fig. 12. One-parameter bifurcation diagram.

successive TP bifurcations occur and chaotic solu-
tion is generated. The schematic diagram is shown
in Fig. 11. We observed tree-like pattern of the
tangent bifurcation sets, discussed in [Yoshinaga &
Kawakami, 1989].

Figure 12 shows a one-parameter bifurcation
diagram changing the parameter values along the
line l in Fig. 10. From this figure, we can con-
firm that the chaotic state is generated by successive
period-doubling bifurcations. The chaotic solution,
at the parameter value marked by ©I , does not sat-
isfy the definition of asymmetrical three-phase (see
Fig. 13). However, after the symmetry-increasing
crisis [Melbourne et al., 1993], it satisfies the def-
inition of asymmetrical three-phase (see Fig. 14).
Thus, we can observe the asymmetrical three-phase

� �

� �

(a) (b)Tλ TP

Fig. 13. Points of (a) Poincaré mapping Tλ and (b) the map-
ping TP for the non-three-phase chaotic solution: ω = 0.5,
α = 0.52078, ω0 = 0.5985.

� �

� �

(a) (b)Tλ TP

Fig. 14. Points of (a) Poincaré mapping Tλ and (b) the
mapping TP for the three-phase chaotic solution: ω = 0.5,
α = 0.51993, ω0 = 0.5972.

chaotic solution at the parameter value marked by
©II in Fig. 12.

4. Concluding Remarks

We have investigated the phase transition between
the solutions with distinct symmetrical property
observed in a system of coupled three-oscillators
with hard characteristics and state coupling. By a
symmetry-breaking bifurcation, a symmetrical in-
phase solution bifurcates into synchronized modes,
called a partially in-phase solution and an almost
in-phase solution. We have summarized the results
of possible phase transitions observed in the sym-
metrical system with respect to the dihedral group
D3 and the inversion of state variables.

Moreover, by using the definition of symmet-
rical and asymmetrical three-phase solutions, we
confirmed the existence of a stable symmetrical
three-phase quasi-periodic solution and an asym-
metrical three-phase chaotic solution. We have
clarified the bifurcation mechanism of generating
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the three-phase chaotic solution: successive period-
doubling bifurcations of phase locked state (asym-
metrical solution) occur and the three-phase
chaotic solution appears after symmetry-increasing
bifurcation.

In coupled oscillator systems with symmetrical
properties, it is an interesting open problem to find
the universal symmetrical property of periodic so-
lutions generated by phase locking phenomena.
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