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We investigate a noninvertible map describing burst firing in a chaotic neural network model
with ring structure. Since each neuron interacts with many other neurons in biological neural
systems, it is important to consider global dynamics of networks composed of nonlinear neurons
in order to clarify not only mechanisms of emergence of the burst firing but also its possible
functional roles. We analyze parameter regions in which burst firing can be observed, and
show that dynamics of strange attractors with burst firing is related to the generation of a

homoclinic-like situation and vanishing of an invariant closed curve of the map.

1. Introduction

A ncuron, or the fundamental element of the
brain, generates various temporal patterns of spikes
[Aihara & Matsumoto, 1986; Scgundo et al., 1995;
Bargas & Galarraga, 1995].

Among such firing patterns, dynamical behav-
ior with burst firing is considered in this paper. The
burst firing is composed of bursts of neuronal spikes
with nearly regular short interspike intervals, in-
terspersed with irregularly longer interburst inter-
vals [Selz & Mandell, 1992]. The burst firing has
been found in many kinds of biological cells and its
possible functions have been also discussed [Crick,
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1984; Selz & Mandell, 1992; Hayashi & Ishizuka,
1992; Robinson et al., 1993; Laurent & Davidowitz,
1994; Bair et al., 1994; Bargas & Galarraga, 1995,
Williams & Sigvardt, 1995; MacLeod & Laurent,
1996; Koch, 1999; Plenz & Kitai, 1999).

Mechanisms of gencrating burst firing and re-
lated rich dynamics including chaos have been in-
tensively studied from the viewpoint of biophysical
and dynamical modeling of nerve membranes by in-
troducing slow variables to fast spiking dynamics
[Carpenter & Grossberg, 1983; Chay et al., 1995,
Wang & Ringzel, 1995; Rinzel & Ermentrout, 1998,
Izhikevich, 2000].
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Since each neuron interacts with many other
neurons in biological neural systems, it is important
to consider global dynamics of networks composed
of nonlinear neurons in order to clarify not only
mechanisms of emergence of the burst firing [Han
et al., 1997] but also its possible functional roles.

In the paper, we examine nonlinear dynamics
and bifurcations of chaotic neural networks with
simple ring structure, i.e. a ring network of neurons
coupled through unidirectional local interactions, in
which chaotic bursts, or burst firing in strange at-
tractors can be observed [Aihara et al., 1990].

2. Model of Chaotic Neural
Network with Ring Structure

We consider a noninvertible map defined by

T:R"— R"; y(t) » y(t+1)=T(y()) (1)
where y(t) = (y1(£),..., yn(t))T is the state vector
at the discrete time ¢ and the ith element T;(y(t))
of T(y(t)) € R™ is described by

Ti(y(®)) = kys(t) + a — F(3u(t)) + wif(yir (1)),
fori=1,2,...,n, yn-f-l(t)Eyl(t)

with nonlinear function f(y) = 1/(1 + exp(—y/¢))
and system parameters k, a, w and . The sys-
tem corresponds to a chaotic neural network model
[Aihara, 1989; Aihara et al., 1990] with ring struc-
ture. The output z;(¢) of ncuron 7 at time ¢ is given
by

zi(t) = £ (yi(t)) - (2)

Examples of time series of the output from each
neuron in strange attractors with burst firing ob-
served in three-coupled neurons are shown in Fig. 1.
We observe two types of burst firing: (i) the out-
put of each neuron is burst firing [Fig. 1(a)] and
(ii) the output of each neuron is almost “singlet”
bursting [Chay et al., 1995] [Fig. 1(b)], however the
sum of the output of each neuron looks like burst
firing [Fig. 1(c)]. In this paper, a mechanism of
the production of the burst firing is investigated
from the viewpoint of nonlinear network dynam-
ics. For considering the essential mechanism of the
burst firing, we treat simple nctworks composed of
n-neurons with n = 2, 3, 4, 6.
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Fig. 1. Bar plots of time series of each neuron’s output in

strange attractors with burst firing observed in Eq. (1). We
consider a response as a spike or firing if the value of the
output is greater than 0.5 [Aihara et al., 1990]. (a) n = 3,
k=075 a0=002 w=05¢=003 (b)n=23,k=009,
a =002 w=05¢=003 (c) The sum of x;, 22 and x3.
n=3 k=009, a=002 w=05, = 0.03.
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3. Symmetric Property of The Map

Note that the map 7" has a symmetric property such
that

ToPl=PioT, Vj=1,...,n (3)

where
0 0
P:R" - R" y(t) — 0oL y(t).
i. : 0 O ....... 0

The set of transformations G = {I, P, P?,...,
Pm=1}, where I denotes the identity transforma-
tion, is a cyclic group of order n, then the map 7' is
G-cequivariant. If there exists an invariant subspace

I, : {y|P'y = y}

for some ¢ = 1, 2,...,n — 1, then we have a sub-
system that behaves in the subspace. We see that
the n-coupled system has a subsystem of m-coupled
systems, where m is any factor of the integer n.

The existence of an m-periodic point u of T,
satisfying P?(u) = T'(u), namely a P/-symmetric
m-periodic point, plays an important role on the
generation of burst firing. We show periodic points
and strange attractors representing burst firing in
the state space by using the following projection
from R™, n > 3, to the plane R?:

1 cos(?wl) cos<27rz)

- lg n n
n 0 sin(QWl) sin(2ﬂ'z)

n n

4. Method for Calculating Local
Bifurcations

Q:R"— R?

(4)

Before showing results, we summarize methods and
notations about analysis of periodic points in the
map T'. The point y* satisfying

y —-T™(y") =0 (5)

becomes a fixed (m = 1) or an m-periodic (m > 1)
point of T'. Let y* € R™ be such a periodic point of

T'. Then the characteristic equation of the periodic
point y* is defined by

“det(pd — DT™(y*)) =0 (6)

where [ is the n x n identity matrix, and DT™ de-
note the derivative of 7™. We call y* is hyperbolic,
if all the absolute values of the eigenvalues of 7™ are
different from unity. The symbol x D™ (resp. x{™)
denotes a hyperbolic periodic point such that D
(resp. I) indicates a type with even (resp. odd)
number of characteristic multipliers on the real axis
(—o00, —1), k indicates the number of characteris-
tic multiplier outside the unit circle in the complex
plane, and m indicates an m-periodic point.

A local bifurcation occurs when the topological
type of a periodic point is changed by the varia-
tion of the system parameter values. In the fol-
lowing section we will observe generic codimension-
one bifurcations of tangent, period-doubling and
Neimark-Sacker bifurcations. These bifurcations
arc observed when the hyperbolicity is destroyed
due to the critical distribution of characteristic
multipliers g such that g4 = 41 for the tangent
bifurcation, ¢ = —1 for the period-doubling bi-
furcation, and u = e/’ for the Neimark-Sacker
bifurcation, where j = +/—~1. To calculate lo-
cal bifurcations, we use the method proposed by
Kawakami [1984]. Namely the fixed or periodic
point equation of Eq. (5) and the bifurcation con-
dition of Egq. (6) are simultaneously solved by
Newton’s method.

In the bifurcation diagram, the tangent, period-
doubling and Neimark-Sacker bifurcation sets of
m-periodic points are indicated by thick, fine and
dotted curves with symbols G7*, I;* and NS}", re-
spectively, where £ is the index number to distin-
guish the same bifurcation type.

5. Numerical Results

5.1. Bifurcation of uncoupled system

First, we show some results of an uncoupled sys-
tem of a single chaotic neuron [n =1 and w =0 in
Eq. (1)] [Aihara et al., 1990], i.e.

yi(t+1) = kyi (t) + a — f(y1(2)) - (7)

Figure 2 indicates a bifurcation diagram of the
chaotic neuron in the parameter plane (a, k) with
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Fig. 2. Bifurcation diagram of Eq. (7) with ¢ = 0.02 in the
parameter plane (e,k). In each colored region denoted by
m, we can observe an m-periodic point. The periods are
defined by the upper colored squares. The black color corre-
sponds to chaotic behavior in the sense that periodicity can-
not be observed with the resolution of 10~% in 10, 000 iterated
points.

e = (.02, showing that various kinds of periodic
and chaotic solutions can be obtained in this neuron
model. This bifurcation diagram as a coarse view
is for visualizing long-term behavior of the system
with global variation of the system parameters and
shows transitions of attractors emanating from a
certain initial value. To investigate exact formulae
of bifurcations of periodic points, we also examined
the bifurcation structure with the method stated in
the previous section. From both kinds of bifurcation
diagrams, we see that periodic solutions are gener-
ated by either tangent or period-doubling bifurca-
tions and that chaotic solutions are generated by
successive period-doubling bifurcations. Figure 3
is an enlargement of a part of Fig. 2. In some
parameter regions, periodic solutions coexist due
to the existence of tangent bifurcations and their
cusp points; this is a property peculiar to bimodal
maps [Fraser & Kapral, 1982; Aihara et al., 1990].
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Fig. 3. Enlarged diagram of a part of Fig. 2.
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Fig. 4. Bifurcation diagram of Eq. (7) with £ = 0.9 in the
parameter plane (a, £). The meaning of colors is the same as
Fig. 2.

Figure 4 indicates a bifurcation diagram in the pa-
rameter plane (a, €) with k& = 0.9.

5.2. Bifurcation of one-dimensional
subsystem for coupling system

Let us consider one-dimensional map of Eq. (1)
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Fig. 5. Bifurcation diagram of Eq. (8) with w = 0.5 and
€ = 0.03 in the parameter plane (a, k). The meaning of col-
ors is the same as Fig. 2.

with n =1, i.e.
yt+1) =ky(t) +a—(1-w)f(n). (&)

Recall that the n-coupled system of Eq. (1) has
a subsystem of m-coupled systems, where m is
any factor of the integer m. Therefore the one-
dimensional system is a subsystem for the original
system of Eq. (1) with arbitrary number of coupled
neurons.

In the following, we fix the values of the system
parameters as w = 0.5 and € = 0.03, and consider
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Fig. 6. Period-doubling bifurcations observed in Eq. (8).

bifurcations in parameter plane (a, k). The bifur-
cation diagram for attractors globally observed in
the system is shown in Fig. 5. Comparison between
Figs. 2 (in the case of w = 0) and 5 (in the case
of w = 0.5) shows that the bifurcation diagrams
have similarity, but the complexity changes due to
the variation of the value of w. Figure 6 obtained
by Kawakami’s method [1984] shows a bifurcation
diagram of a fixed point and periodic points. The
single neuron dynamics produces strange attractors
after accumulation of successive period-doubling bi-
furcations in the parameter region as shown in
Fig. 6. The regions in which stable fixed, 2-periodic,
4-periodic and 8-periodic points exist are denoted
by the shading &= , =, = and ™, respectively.

5.3. Resulls of coupled systems

In this section we consider chaotic neural networks,
Eq. (1), with ring structure composed of n neurons
with n = 2, 3, 4 and 6. Each figure shown in Fig. 7
obtained by Kawakami’s method [1984] represents
a bifurcation diagram with local and global bifur-
cations. Parameter regions in which stable fixed
and periodic points exist are denoted by the shad-
ing B2, ® and M. In each bifurcation diagram,
the parameter region denoted by B shows existence
of homoclinic-like structure which may generate
strange attractors with burst firing, namely chaotic
bursts. Detailed explanation of the homoclinic-like
structure will be given in Sec. 5.3.2. The strange
attractors observed at the parameter value labeled
by p in Fig. 7 have characteristic forms in the state
space as shown in Fig. 8. For n > 3, the n-
dimensional state space is projected by Eq. (4) to
the plane (u, v)T = Qy.

Now, we consider a mechanism of the gener-
ation of the strange attractors with burst firing.
Each of Figs. 9(a)-9(d) shows an a-branch or an
unstable set of a saddle fixed or periodic point, co-
existing with a strange attractor shown in Fig. §,
which is obfained as a steady state of the simu-
lation emanating from an initial condition except
for the a-branch. The a-branch of Fig. 9 was nu-
merically calculated by the method in [You et al.,
1991]. It should be noted that self-intersections
of the a-branch are possible, because Eq. (1) is a
noninvertible map [Millerioux & Mira, 1997]. We
see that the strange attractor coexists with the a-
branch as shown in Figs. 8 and 9. The emergence
of the strange attractor is related to vanishing of
an invariant closed curve of 1™ after generating a
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Fig. 7. Bifurcation diagrams observed in Eq. (1) with n = 2, 3, 4 and 6. On the curves Hi and H}, there exists a homoclinic
point such that the a-branch is tangent to the w-branch. (a) n =2, (b)n =3, (c)n=4, (d) n =6.

homoclinic-like situation, as studied below where
dynamics of n-coupled neurons with n = 2, 3, 4 and
6 are investigated.

5.3.1. The case of n =2

The stable fixed point, which exists in the region
= in Fig. 7(a), changes its stability to the type
1J! by passing through the period-doubling bifurca-
tion curve I}, whose eigenvector with respect to the
unstable characteristic multiplier has the direction
(1, F1)T [Judd et al., 1991]; see the a-branch of
the fixed point ;/'shown in Fig. 9(a). Because the
w-branch is on the line y; = y9, a homoclinic situa-

tion is constructed. The parameter region in which
a- and w-branches intersect each other is denoted
by the shading ® in Fig. 7(a). On the curves Hj
and Hj, there exists a homoclinic point such that
the a-branch is tangent to the w-branch. The nu-
merical method to calculate such homoclinic points
is shown in [Yoshinaga et al., 1997]. The homo-
clinic structure generates the strange attractor rep-
resenting the burst firing, or the chaotic bursts as
demonstrated in Fig. 1 for the case with n = 3.
Dynamical structure to produce such chaotic bursts
will be considered in Sec. 5.3.2. In the shaded re-
gion M, similar strange attractors with burst firing
can be observed. :
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Fig. 8. Strange attractors observed in Eq. (1) at the parameter values marked by p in Figs. 7(a)-7(d). (a) n = 2, a = 0.02,
E=07 (b)n=3,a=002k=09. (c)n=4,a2a=002 k=09 (d)n=6,a=002 k=097

5.3.2. The case of n=3

For the three-coupled neurons, 3-periodic points
are related to the occurrence of chaotic bursts.
Figure 7(b) shows bifurcations of fixed and P2-
symmetric 3-periodic points. In regions m and
m , stable fixed and P2-symmetric 3-periodic points
exist, respectively. At the point labeled by p in
Fig. 7(b), there is a 3-periodic point ;D3 gener-
ated by the tangent bifurcation G®. The a-branch
of the 3-periodic point ;D* is shown in Fig. 9(b).
The a-branch returns again around the 3-periedic
point 1. D3, then a homoclinic-like situation is con-
structed. Indeed, at the same parameter values, we

see chaotic bursts around the a-branch as shown
in Fig. 8(b). To understand the mechanism of
the generation of the chaotic bursts, the transi-
tion of the a-branch of the 3-periodic point ;D3
is shown in Fig. 10. At k& = 0.663 [Fig. 10(a)],
the a-branch of the 3-periodic point D% goes to
the stable P2-symmetric 3-periodic point ¢ D3. The
3-periodic point ;D® is two-dimensionally stable,
and near the 3-periodic point ;D? there exists
two-dimensionally unstable fixed point ».D'. By in-
creasing the value of k the stable P%-symmetric 3-
periodic point ¢D?* becomes two-dimensionally un-
stable (%) by a Neimark-Saker bifurcation in the
set NS7 of Fig. 7(b) and generates an invariant
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Fig. 9. The a-branch of (a) 11, (b) 1D?, (c) 31* and (d) 31* of Eq. (1) with » = 2, 3, 4 and 6, respectively. (a) n = 2,

(b)n=3,(c)n=4,(d)n=256

closed curve of T [Fig. 10(b)]. The invariant closed
curve turns into an annular strange attractor [Mira,
1987] and the chaotic bursts appears due to merg-
ing of three disconnected annular chaotic areas by
further increasing of k [Fig. 10(c)]. A schematic di-
agram of the homoclinic-like structure is shown in
Fig. 11. The parameter region with the homoclinic-
like structure is shaded by B in Fig. 7(b). We can
observe chaotic bursts widely in the region ™. To
examine the bursting property, we calculate the co-
efficient of variation (C,) of the interspike intervals
(IST) which is defined by the standard deviation
divided by the mean of the ISI distribution. Fig-

ure 12 shows the values of C, for output z; of neu-
ron 1 [Fig. 12(a)] and the sum of outputs z1, z2
and z3 [Fig. 12(b)] in the same parameter plane as
in Fig. 7(b). In the shaded region m of Figs. 12(a)
and 12(b), we observe the chaotic bursts as shown
in Figs. 1(a) and 1(c), respectively. We see that the
regions in which an attractor with C, > 0.4 exists
are included in the region ™ in Fig. 7(b). We also
analyze an excitation number r which is defined as
follows:

(1) For output of a single neuron, 7 is defined by the
number of spikes divided by that of iterations.
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Fig. 10. Transition of the a-branch in relation to chaotic bursts of three-coupled neurons with ¢ = 0 and (a) k = 0.663,

(b) k = 0.664, (c) k = 0.67.

(2) For behavior of a network, r is defined by the
number of points outside of the disk satisfying
d < 0.5, where d is an Euclidean distance from
the origin in (u, v)-plane, divided by the num-
ber of iterations.

Figure 13 shows the value of r in the same pa-
rameter plane as in Fig. 7(b). We see that the re-
gions in which an attractor with r € [0.1, 0.9] exists
are included in the region ™ in Fig. 7(b), similarly
to Fig. 12.

5.3.3. The case of n =4

The periodic point related to the occurrence of the

chaotic bursts is a P-symmetric 2-periodic point
3I2. The o-branch of the periodic point 3I? at
the parameter values marked by p in Fig. 7(c) is
shown in Fig. 9(c). The curve NS{ in Fig. 7(c)
denotes a Neimark-Sacker bifurcation of a stable 4-
periodic point which exists in the parameter region
m and is generated by the period-doubling bifur-
cation I? of a 2-periodic point. The generation of
the chaotic bursts is related to vanishing of an in-
variant closed curve of 7%, which is caused by NSY,
as the similar mechanism for the case of n = 3.
The region of the parameter values for the exis-
tence of the homoclinic-like structure in which the
characteristic multipliers of a fixed point and peri-
odic points satisfy the condition of Fig. 11, is shaded
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P-symmetric n-periodic tems: single, two-coupled and three-coupled neu-
point with [z > 1 rons. Therefore the bifurcations include those for
each subsystem. The periodic point related to the
occurrence of the chaotic bursts is a P%-symmetric
3-periodic point 3I%. The a-branch of the periodic
point 3/° at the parameter values marked by p in
Fig. 7(d) is shown in Fig. 9(d). Considering the
Neimark-Sacker bifurcation NS® in Fig. 7(d), which
generates an invariant closed curve of T, the re-
gion of the parameter values for the existence of the

periodic point with homoclinic-like structure in which the characteris-
fixed point with WMy <land |pus| >1 tic multipliers of a fixed point and periodic points
Mifz>1land |ps| <1 satisfy the condition of Fig. 11, is shaded by M in

Fig. 7(d). The chaotic bursts are widely observed

Fig. 11. A schematic diagram of homoclinic-like structure. in the region = .

1 and pp are complex conjugate characteristic multipliers
and g3 is a real characteristic multiplier.

6. Discussion
by ™ in Fig. 7(c). In most part of the region =,

we can observe the chaotic bursts. We have shown that chaotic neural networks with

ring structure can generate strange attractors with
5.3.4. The case of n =6 burst firing. The 'networ.k is compos?d of nonl.inez'a,r
neuron models with their own chaotic dynamics in
The six-coupled neuron system has three subsys-  the single neuron level [Aihara et al., 1990; Aihara,

Cy<04 Cv =04 C,<04 Cv=04

ada—> a-—»

(a) (b)

Fig. 12. Coefficient of variation (C') of interspike intervals (ISI) observed in three-coupled neurons. The dark gray color
corresponds to a nonperiodic attractor with €\, > 0.4. The meaning of colors except the gray colors is the same as Fig. 2. We
see window regions of periodic points in the gray color region. (a) C. of ISI for output x; of neuron 1. (b) €., of ISI for the
sum of 1, 2 and z3.
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Excitation number r of attractors in three-coupled neurons. The dark gray color corresponds to a nonperiodic

attractor with » € [0.1, 0.9]. The meaning of colors except the gray colors is the same as Fig. 2. We see window regions of
periodic points in the gray color region. (a) r for output z; of neuron 1. (b) r for the sum of z;, z» and z3.

1990]. Therefore, the burst firing is a collective be-
havior in the network level organized through uni-
directional local interactions between neurons, pe-
culiar to the ring structure. It should be noted that
nearly synchronous burst firing similar to chaotic
bursts demonstrated in this paper is observed in
neural networks of central pattern generators com-
posed of a small number of neurons of which the dy-
namics is chaotic when isolated [Sziics et al., 2000].
However, since the network model in this paper is
highly simplified as a model of biological neural net-
works, it is a future problem to extend the model
by considering more realistic properties like time
delays [Campbell et al., 1999], mutual interaction
rather than unidirectional interactions peculiar to
the ring structure and contribution of inhibitory
neurons to synchronous burst firing [MacLeod &
Laurent, 1996; Plenz & Kitai, 1999).

We have observed two types of chaotic bursts
in the chaotic neural network with ring structure;
one is burst firing of each single neuron as usually
observed in biological neurons [Fig. 1(a)] and the

other is burst firing as superposition of output of
each neuron [Fig. 1(c)]. It should be noted that an
effect of the superposed burst firing to a postsynap-
tic neuron is similar to one of usual burst firing of
a single neuron if most constituent neurons of the
ring network have synaptic connections to a com-
mon postsynaptic neuron with almost same delays.

7. Conclusions

We have investigated a mechanism of the genera-
tion of the burst firing observed in chaotic neural
networks with the ring structure. The main results
obtained from the analysis are summarized as fol-
lows: (1) We have found that the chaotic bursts
are related to a-branches of P/-symmetric periodic
points; and (2) the strange attractor appears when
an invariant closed curve of 7™, which is generated
by a Neimark—Sacker bifurcation of an n-periodic
point, vanishes after generating a homoclinic-like
situation due to the change of the system parame-
ter values. Critical curves (or manifolds) [Mira &
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Narayaninsamy, 1993], i.e. images of sets that the
Jacobian equal to zero, play a fundamental role in
global bifurcations of noninvertible maps. It is an
important future problem to investigate the rela-
tion between the homoclinic-like situation and the
critical manifold.

It is conjectured that the coupled neurons with
any number of coupling can produce chaotic bursts.
It is a future work to consider possible relations of
such nonlinear dynamics of the chaotic neural net-
works to nearly synchronous burst firing of biologi-
cal neural nctworks.
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