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Forced Synchronization of Coupled Oscillators

Hiroyuki KITAJIMA†∗, Yasushi NOUMI†, Takuji KOUSAKA†,
and Hiroshi KAWAKAMI†, Members

SUMMARY We consider a system of coupled two oscilla-
tors with external force. At first we introduce the symmetrical
property of the system. When the external force is not applied,
the two oscillators are synchronized at the opposite phase. We
obtain a bifurcation diagram of periodic solutions in the coupled
system when the single oscillator has a stable anti-phase solution.
We find that the synchronized oscillations eventually become in-
phase when the amplitude of the external force is increased.
key words: coupled oscillator, bifurcation, symmetry

1. Introduction

Systems of coupled oscillators have been used exten-
sively in physiological and biochemical modeling stud-
ies. Using group theoretic discussion applied to the
coupled oscillators, we can derive some general theo-
rems concerning with the bifurcations of equilibrium
points and periodic solutions [1]. Many investigators
have been studied two mutually coupled oscillators [2]–
[4](mutual synchronization) because two oscillators’
case is a prototype modeling to understand the phe-
nomena in a large number of coupled oscillators. For in-
stance, Kimura et al. investigated synchronization phe-
nomena observed in two oscillators coupled by a resistor
with current connection [4]. They confirmed that these
oscillators were synchronized in the opposite phase. On
the other hand forced synchronization is also studied
in the filed of physiology (forced BVP [5]), chemistry
(forced Brusselator [6]) and electric engineering (forced
van der Pol [7]). However we cannot find the study of
connecting mutual synchronization and forced synchro-
nization.

In this study a forced coupled oscillator is ana-
lyzed. The dynamics of the circuit becomes invariant
under the transformations: (1) interchange of the state
variables, and (2) inversion of state variables with time
shift π radian [8]. The periodic external force is in-
jected into the invariant subspace of the transforma-
tion (1). When the external force is not applied, the
two oscillators are synchronized in the opposite phase.
We obtain a bifurcation diagram of periodic solutions
in the coupled system when the single oscillator has a
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stable anti-phase solution. We find that the synchro-
nized oscillations eventually become in-phase when the
amplitude of the external force is increased. The bifur-
cation processes corresponding to the synchronizations
stated above are clarified by the bifurcation diagram.
In the diagram we obtain codimension three bifurca-
tion points of intersection of D-type of branching and
Neimark-Sacker bifurcation. Around these points we
observe bifurcations of quasi-periodic solutions.

These results are useful for understanding the com-
plicated phenomena in a simple forced oscillator [9] and
are important for the study of biological rhythm and
biorhythm like ultradian rhythm and circadian rhythm.

2. Circuit Equation and Related Property

We assume nonlinear conductance g(v) and voltage
source e(t) in Fig. 1 as

g(v) = −a1v + a3v
3, e(t) = E sin(νt). (1)

Then the normalized circuit equations are described by

dr1
dt
= −

[
−c1 + c3

2
(r12 + 3r22)

]
r1 − ωs1 − δ1r1

+
√
2δ1B sin(νt)

ds1
dt
= ωr1 − σs1 (2)

dr2
dt
= −

[
−c1 + c3

2
(3r12 + r2

2)
]
r2 − ωs2 − δ2r2

ds2
dt
= ωr2 − σs2

where

Fig. 1 Circuit diagram.
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c1 =
a1

C
, c3 =

a3

C2
, σ =

r

L
, ω =

1√
LC

,

B =
√
CE, δ1 =

G

C(1 + 2GG0)
, δ2 =

G

C
,

xi =
√
Cvi, yi =

√
Lii, (i = 1, 2)

and [
r1 s1
r2 s2

]
=
1√
2

[
1 1
1 −1

] [
x1 y1

x2 y2

]
(3)

Equations (2) have following symmetrical operations:

σ0 : R4 ×R → R4 ×R ;
(r1 s1 r2 s2 νt) �→ (r1 s1 − r2 − s2 νt)

I1/2 : R4 ×R → R4 ×R ;
(r1 s1 r2 s2 νt) �→ (−r1 − s1 − r2 − s2 νt− π)

σ1/2 : R4 ×R → R4 ×R ;
(r1 s1 r2 s2 νt) �→ (−r1 − s1 r2 s2 νt− π)

(4)

3. Method of Analysis

We assume the periodic solution in Eq. (2) as

x(t) = ϕ(t, x, λ) (5)

where

ϕ(0, x, λ) = x (6)

and define the Poincaré map:

T : R4 → R4; x �−→ T (x) = ϕ(2π/ν, x, λ). (7)

Then the fixed point x0 of T satisfies

x0 − T (x0) = 0 (8)

and the characteristic equation is described as

χ(µ) = det(µI4 −DT (x0)) (9)

where

DT (x0) =
∂T (x0)
∂x

=
∂ϕ(2π/ν, x, λ)

∂x
, (10)

µ = 1 : tangent bifurcation,
µ = 1 : D-type of branching (degenerate case),
µ = ejθ : Neimark-Sacker bifurcation.

We can obtain bifurcation parameters of the fixed point
solving Eqs. (8) and (9) simultaneously [10].

4. Results

We fix the parameters in Eq. (2) as

c3 = 1/3, δ1 = 1.0, ω = 1.0, σ = 0.5.

Fig. 2 Bifurcation diagram of equilibrium points and periodic
solutions in Eq. (2) where B = 0. Dashed and solid lines indicate
Hopf bifurcation of the equilibrium point at the origin and D-type
of branching of periodic solutions, respectively.

4.1 Bifurcations of the Unforced System

At first we study bifurcations of the unforced system
with B = 0 in Eq. (2). Figure 2 shows a bifurcation
diagram of the unforced system. In the shaded region

there exists a stable equilibrium point at the ori-
gin. Changing the parameters along the curve l, the
first Hopf bifurcation 0h2 and the second Hopf bifurca-
tion 0h1 generate the anti-phase and the in-phase peri-
odic solution, respectively. The in-phase solution meets
the D-type of branching D1 (symmetry-breaking bifur-
cation) and generates two I1/2-invariant solutions. In
the next section, we consider that the unforced system
has stable anti-phase and unstable in-phase solutions
(the point marked by (1) in Fig. 2). Note that δ2 < 1
for δ1 = 1 implies GG0 < 0 in the original circuit.

4.2 Forced Synchronization

Figure 3 shows a bifurcation diagram of periodic solu-
tions in Eq. (2). Because the unforced system (B = 0)
has anti-phase and in-phase solutions, their correspond-
ing bifurcation sets G1, G2, and G4, respectively, meet
the axis of B = 0 at ν1 and ν2. Here we are inter-
ested in how to change the anti-phase solution under
the influence of external force. Figures 4 (a)–4 (d) show
trajectories of the solutions when the amplitude B of
the external force is increased. Note that the external
force is applied to the in-phase direction (see Eq. (2)).
When B = 0 the oscillators synchronize in the opposite
phase, see Fig. 4 (a). Increasing B, two I1/2-invariant
solutions appear (Figs. 4 (b) and (c)). If we can find
one of them by the operation σ0 or σ1/2, we can easily
obtain the other solution. In the region these
two solutions stably exist. Increasing B the oscillators
synchronize with in-phase in the region .
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Fig. 3 Bifurcation diagram of periodic solutions in Eq. (2).
The symbols G and N indicate tangent and Neimark-Sacker bi-
furcation set, respectively. δ2 = 0.5. c1 = 1.6.

(a) B = 0. Anti-phase.

(b) ν = 0.8. B = 0.6. I1/2-invariant.

(c) ν = 0.8. B = 0.6. I1/2-invariant.

(d) ν = 0.8. B = 0.8. In-phase.

Fig. 4 Trajectories of the solutions in Eq. (2). Arrows and the
points marked by closed circles indicate the time direction of
the trajectory and the fixed point of Poincaré map, respectively.
(Left) r1 vs. r2. (Middle) Oscillator 1. (Right) Oscillator 2.

(a) ν = 1.0. B = 0.627.

(b) ν = 1.0. B = 0.627.

(c) ν = 1.0. B = 0.615.

Fig. 5 Quasi-periodic solutions in Eq. (2). (Left) Trajectories.
r1 vs. r2. (Middle) The points of Poincaré map for Oscillator 1.
(Right) The points of Poincaré map for Oscillator 2.

In Fig. 3 open circles indicate the points of inter-
section of Neimark-Sacker bifurcation set and D-type of
branching set of periodic solutions called codimension
three bifurcation. Two Neimark-Sacker bifurcation sets
N1 and N2 (orN3 and N4) are the bifurcations of differ-
ent periodic solutions. Changing the parameter along
the line l1 and l2, two stable and one unstable quasi-
periodic solutions are generated, respectively. The two
stable solutions are shown in Figs. 5 (a) and (b). De-
creasing the parameter B, these two quasi-periodic so-
lutions become one solutions (see Fig. 5 (c)).

This bifurcation structure of quasi-periodic solu-
tions is similar to that of P 2-codimension two bifur-
cation point [11]. Thus we can predict that the large
quasi-periodic solution disappears the unstable quasi-
periodic solution generated by Neimark-Sacker bifurca-
tion N4.

5. Concluding Remarks

We have investigated synchronization of coupled two
oscillators with external force. When the external force
is not applied, the two oscillators are synchronized in
the opposite phase. We obtain the bifurcation diagram
of periodic solutions in the coupled system when the
single oscillator has a stable anti-phase solution. We
found that the synchronized oscillations eventually be-
come in-phase when the amplitude of the external force
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is increased.
The future problems are to study as follows:

• forced synchronization when the unforced system
has different periodic solution,

• the bifurcation of quasi-periodic solutions around
the points of intersection of D-type of branching
and Neimark-Sacker bifurcation.
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