476

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

|PAPER
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SUMMARY In this paper, we study bifurcations of equilib-
rium points and periodic solutions observed in a resistively cou-
pled oscillator with voltage ports. We classify equilibrium points
and periodic solutions into four and eight different types, respec-
tively, according to their symmetrical properties. By calculat-
ing D-type of branching sets (symmetry-breaking bifurcations)
of equilibrium points and periodic solutions, we show that all
types of equilibrium points and periodic solutions are system-
atically found. Possible oscillations in two coupled oscillators
are presented by calculating Hopf bifurcation sets of equilibrium
points. A parameter region in which chaotic oscillations exist is
also shown by obtaining a cascade of period-doubling bifurca-
tion sets.
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1. Introduction

Systems of coupled oscillators are good models for
biological rhythmic oscillation such as human circa-
dian rhythms [ 1], finger movements [2], animal locomo-
tion[3],[4] and so on. The investigators have studied
the mechanism of oscillation and phase transitions be-
tween distinct oscillatory modes. From the standpoint
of bifurcation, the former and the latter correspond to
Hopf bifurcation of an equilibrium point and D-type of
branching of a periodic solution, respectively.

Using group theory, it has been possible to derive
some general theorems concerning with the bifurcations
of equilibrium points[5],[6]. Papy et al. classified equi-
librium points and periodic solutions observed in hy-
bridly coupled two oscillators according to their sym-
metrical properties[7],[8]. The equilibrium points are
completely classified, however the classification of the
periodic solutions is not enough, because they treated
the periodic solutions with different symmetrical prop-
erties as same type. We think that two coupled oscil-
lators’ case is a prototype of modeling to understand
the phenomena in a large number of coupled oscilla-
tors[9], especially even number of coupled oscillators.
By obtaining bifurcation diagrams of a system of cou-
pled oscillators we can design the system with the opti-
mal operating condition.
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In this paper we investigate bifurcations of equi-
librium points and periodic solutions observed in re-
sistively coupled two oscillators with voltage ports. At
first we introduce the definition of a symmetrical equa-
tion, equilibrium point and periodic solution [10]. Next
we classify the periodic solutions according to their
symmetrical properties. By calculating bifurcation sets,
transitions between the solutions with different symmet-
rical properties are obtained. Moreover we find chaotic
oscillation created by a cascade of period-doubling bi-
furcations. As far as we know chaotic oscillation is
never reported in such a simple coupled system.

2. Circuit Equation
We consider a system of coupled two identical BVP

oscillators by a linear resistor with voltage ports, see
Fig. 1. The circuit equations are described as

dv .
Cd—Tl = —g(v1) — i1 — G(v1 — va)
L%:Ul—Til

’ (1
B2 L) — iy — Glvs — v)

dr g\v2 2 2 1

di
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where the nonlinear conductance g(v) is assumed to be
g(v) = —aqv + asv. (2)
Rescaling coordinate system
z; = VLii, yi = VCu;, (i=1,2) 3)

and changing parameters
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Fig. 1  Oscillator circuit coupled by a resistor.
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By taking the new coordinate system

1
71 (z1+22), 51=—"2(¥1+92)

1
r—ﬂi< ~z2) —i< w
2—\/5951 z3), S2~\/§y1 Y2

we obtain following equations:
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% = —wry+e€ (1 — g(sg + 35%)) Sg — 2685. (7)

3. Definition of Symmetrical Properties

[Equation |

Equation (7) can be rewritten as

dx

= = @3 ®)
If there exists a matrix P satisfying

f(Pz,\) = Pf(z,A) C)

then Eq. (8) is called P-symmetrical equation.
[Equilibrium point]
We say that an equilibrium point eg such that

Peo = €p (10)

is P-invariant equilibrium point.
[Periodic solution]

We assume a periodic solution of Eq. (8) with ini-
tial condition zg : = z(0) as

z(t) = o(z0, ). (11)
If there exists a matrix P and a time 7p such that
PgO(JJ,t) ‘:(,D(P:E,t) :‘p(SE)t_TP) (12)

then we call that the periodic solution ¢(z,t) is (P, 7p)-
symmetrical periodic solution. The phase difference ¢
between the waveforms of each oscillator is defined by:
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Table 1  Group table of I.

[ o a]n

Iy Iy o1 o2 Iy

o1 || o1 | Is | Is | o2

o9 o2 .[_4 Iy o1

|| Is | o2 | o1 | L

r

¢=2m-L (13)

L

where L is the period of the periodic solution. We
call solutions in-phase and anti-phase when ¢ = 0 and
¢ = m, respectively. Thus symmetries of periodic solu-
tions have both a spatial component P and a temporal
component 7p.

Consider Eq. (7), matrices satisfying Eq. (9) are

[ o L o
I4_|:O IZ], Ul_[O 172:|>
_( L O F_| L O
02—l:0 IQ}, I4_|:O I—ZJ (14)

Wherg I is 2 x 2 identity matrix, O is 2 X 2 zero matrix
and Iy = —I5. The set I':

F:{I4,O'17O'2,174} (15)

forms an abelian group with the multiplication as
shown in Table 1.

4. Results

4.1 Classification of Equilibrium Points and Periodic
Solutions

We classify equilibrium points according to their sym-
metrical properties in Table 2. There exist four kinds
of equilibrium points in Eq. (7). Figure 2 shows loca-
tions of each equilibrium point in (71, s1) and (rg, s2)
space. The origin (@) is an equilibrium point with full
symmetry I'. The equilibrium points (ll) and (A) are
o1- and oy-invariant equilibrium points by the defini-
tion Eq. (10), respectively. The equilibrium points (X)
has only symmetry operation I, thus it is asymmetry.
When there is an asymmetrical equilibrium point, the
orbit of I' (14) defines immediately three other equilib-
rium points, see Fig. 2.

By the definition of symmetrical periodic solution,
i.e., Eq. (12), we classify periodic solutions observed in
Eqs. (7), see Table 3. From this table, we see that in to-
tal eight kinds of periodic solutions exist in Eq. (7) (In
Ref. [8] they classified periodic solutions into five types).
All of them is sketched on (ry,r2) plane in Fig.3. We
will use the name written in each sub-caption here.

4.2 Bifurcation of Equilibrium Point

The Jacobian matrix of the system at the equilibrium
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Table 2 Classification of equilibrium points (abbrev. EP) ac-
cording to their symmetrical properties.

type (m) | symmetry operation | #EP \ symbol
full symmetry (0) {I4, 01,02, 14} 1 o
o1-invariant (1) {I4,01} 2 |
oo-invariant (2) {I4,02} 2 A

asymmetry {14} 4 X

Fig. 2 Classification of equilibrium points according to their
symmetrical properties.  Symbols are referred to Table 2.
Axes (r,,s;) represent subspace satisfying o;z = z where
z = (r1,s1,72,s2) called o;-invariant subspace (i = 1,2). The
origin is invariant under coordinate transformation by o1, o2
and Iy.

Table 3 Classification of periodic solutions (abbrev. PS) ac-
cording to their symmetrical properties.

symmetries ’ #PS | comment
(01,0), (02, L/2), (Ia, L/2) | 1 in-phase
(02,0), (o1, L/2), (Is, L/2) 1 anti-phase
(c1,0) 2 “shifted” in-phase
(o2,0) 2 “shifted” anti-phase
(o2,L/2) 2 almost in-phase
(o1,L/2) 2 almost anti-phase
(I, L/2) 2 I-invariant
(I14,0) 4 asymmetry
point (r19, $10, 720, $20) [11] is
—o w
3B .2 2
J— | v 6(1_-2“( 10+ 530)
0 0
0 —366810820
0 0
0 —365510820
—c w (16)

3
—w € (1 - ;( o +s§0)) —26
Parameters in Eq.(7) are fixed as

c=08,8=10,w=10. an

We investigate bifurcation problems in the (6, €) param-
eter plane. By calculating the eigenvalues p of Eq. (16),

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

'
'

'
—— L -—
'

[

[

(a) in-phase (1)  (b) anti-phase (1) (_C) shifted
in-phase (2)

| - ) :
(d) shiflted ©)] almost (63) almlost
anti-phase (2) in-phase (2) anti-phase (2)
: O:0 o

Nloiol be

(2) Le-invariant  (h) asymmetry (4)
)

Fig. 3 Classification of periodic solutions. Parenthesized num-
ber indicates number of periodic solutions corresponding to #PS
in Table 3.
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Fig. 4 Bifurcation diagram of equilibrium points. Solid lines
(h) and dashed lines (d) indicate Hopf bifurcation set and D-type
of branching set, respectively.

we obtain Hopf bifurcation (¢ = £iw) and D-type of
branching (u = 0) sets. The results are shown in Fig. 4
as a bifurcation diagram.

In Fig. 4 the notations ,,h; and ,,d; indicate, re-
spectively, Hopf bifurcation set and D-type of branching
set of type m equilibrium point, see Table 2; k denotes
the bifurcating direction (O or @ in Fig.2). The sym-
bols O, < and [] represent codimension two, three and
four bifurcations which are the points of intersection
of double Hopf bifurcations, D-type of branching and
Hopf bifurcation, and double D-type of branchings, re-
spectively. In the regions [///], and: there
exist stable equilibrium points whose type is, respec-
tively, full symmetry, o, -invariant and oq-invariant.
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At first we explain bifurcation structure and stabil-
ity of equilibrium points around the point marked by .
In Sect. 4.3 we will show detailed bifurcation diagrams
including bifurcation sets of periodic solutions around
the points marked by &, <>, @ and .

Figure 5 shows only D-type of branching sets in
Fig.4. A schematic bifurcation diagram is shown in
Fig.6 when the parameters ¢ and 6 change along the
curve ! in Fig. 5. In Fig.6 from the points marked by
®, @, ® and ® “two” equilibrium points are gener-
ated by D-type of branching, but we omit one of them
because two branches have same bifurcation structure.
From Fig.6, we see that there exist one equilibrium
point with full symmetry in whole parameter plane, two
og-invariant equilibrium points between O and ®, two
oy-invariant equilibrium points between @ and ®, and
four equilibrium points without symmetry between @
and @. Since the equilibrium point with full symme-
try is already completely unstable (4O) by two Hopf
bifurcations oh; and ghs, equilibrium points generated
by D-type of branchings (qd;, ods, 1d2 and 2d;) are all
unstable.

In Table 4 we show that Hopf bifurcations in Fig. 4
generate what kind of periodic solutions. From this ta-
ble we see that six kinds of periodic solutions are gen-
erated by Hopf bifurcations of three kinds of equilib-
rium points and “Iy-invariant” periodic solution never
appear by Hopf bifurcation.

Fig. 5 Bifurcation diagram around the intersection point of
double D-type of branchings.

asymmetry

O -invariant
40

G2-invariant

0 30 20 30 @ 40
“ 0 ®full symmetry® ©

Fig. 6 Bifurcation diagram corresponding to the curve ! in
Fig.5. The symbol O indicates equilibrium point and its sub-
script represents a dimension of unstable subspace.
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4.3 Bifurcation of Periodic Solution

We show in Fig.7 a bifurcation diagram around the
point marked by &in Fig.4 (the point of intersection
of D-type of branching set odz and Hopf bifurcation set
ohp). Figure 8 shows a bifurcation diagram when the
parameters change along the curve [ in Fig.7. “Almost
in-phase” solutions generated by D-type of branching
D; (®) of in-phase solution meet Neimark-Sacker bi-
furcation N (@) and disappear by the Hopf bifurcation
2hy (®) of op-invariant equilibrium points.

Figure 9 shows a bifurcation diagram around the
point marked by<® in Fig.4 (the intersection point of
2d; and 2hs). In small parameter region there exist
many bifurcation sets and the bifurcation diagram be-
comes complicated therefore we use a schematic dia-

Table 4 Hopf bifurcations of equilibrium points shown in

Fig. 4.
notation bifurcation

ohy full symmetry < in-phase
oha full symmetry <> anti-phase
1hy o1-invariant < “shifted” in-phase
1hs op-invariant < almost anti-phase
2hy og-invariant < almost in-phase
5ho oo-invariant < “shifted” anti-phase

13

0.7 .
~-0.50 6 -0.25 0

—_—

Fig. 7 Bifurcation diagram around the intersection point of
Hopf bifurcation and D-type of branching. N represents
Neimark-Sacker bifurcation.

-almost
in-phase

1D, Q

3
6 & &
30

full symmetry

" Oz-invariant
2

0% 05 50 0
Fig. 8 Bifurcation diagram corresponding to the curve [ in
Fig.7. Heavy curves (D) and light curves (O) indicate periodic
solutions and equilibrium points, respectively. Subscripts of D
and O represent a dimension of unstable subspace.
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Fig. 9 Schematic bifurcation diagram around the intersection
point of Hopf bifurcation and D-type of branching.

"shifted"

anti-phase  ,p asymmetry

asymmetry
30
D ®
30 @ 0@ ® 20 @ 0 @ 30
Ga-invariant

Fig. 10 Bifurcation diagram corresponding to the curve [ in
Fig. 9.

gram. Figure 10 shows a bifurcation diagram when the
parameters change along the curve [ in Fig. 9. Bifurca-
tion structure is similar to that of Fig.7, but in Fig.9
there exists tangent bifurcation set G4 and asymmetrical
solution is folded (the point marked by ® in Fig. 10).
Four unstable ICCs (Invariant Closed Curves) which
correspond to quasi-periodic solutions are generated by
N, (®). Those results permit us to predict that simi-
lar bifurcation structure would exist around the points
marked by <> in Fig. 4.

We show in Fig. 11 a bifurcation diagram around
the point marked by @ in Fig. 4 (the intersection point
of ghy and ghs). In the shaded region , one stable
equilibrium point with full symmetry exists. From this
region increasing the parameter € and crossing ohy, we
obtain a stable in-phase solution. On the other hand
decreasing the parameter § and crossing gha, a stable
anti-phase solution appears. Figure 12 shows a bifur-
cation diagram when the parameters change along the
curve [ in Fig. 11. The in-phase and the anti-phase solu-
tion appeared at @, @ and ©, (0, respectively, generate
“I4-invariant” periodic solutions by D-type of branch-
ings D; (®) and D; (®). On the axis of § = 0, the
dimension of unstable subspace is changed through a
cusp point.

We show in Fig. 13 a bifurcation diagram around
the point marked by ® in Fig. 4 (the intersection point
of ohy and ohy and also of 1h; and 1hsy). Bifurcation
structure is the same as that of Fig. 11, but symmetrical
properties and stability are changed, see Fig. 14.

Figure 15 shows a bifurcation diagram in the large
value of parameter . The in-phase solution and the
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Fig. 11  Bifurcation diagram around the intersection point of
double Hopf bifurcations. D represents D-type of branching of
periodic solution.

14-invariant

anti-phase in-phase

Om 20 & 0 2 20 & o0
o e fullsg'mmetry©2 @°

Fig. 12 Bifurcation diagram corresponding to the curve ! in
Fig. 11.

o1 0 0.1

Fig. 13  Bifurcation diagram around the intersection point of
double Hopf bifurcations.

anti-phase solution generated by the Hopf bifurcations
ohy and ghs disappear by tangent bifurcations G; and
Gy, respectively [12]. “I;-invariant” periodic solutions
caused by Dy of the in-phase solution and Dy of the
anti-phase solution meet Dy and generate four asymmet-
rical solutions. Figure 16 shows a bifurcation diagram
of the asymmetrical solutions. Inside period-doubling
bifurcation set I; there is a cascade of period-doubling
bifurcations and asymmetrical chaotic state appears, see
Fig. 17. From Fig. 17 (b), this chaotic attractor has any
symmetry operations therefore in total four chaotic at-
tractors exist. . In a system of coupled two oscillators
where the single oscillator does not have any chaotic
oscillations, the existence of stable asymmetry periodic
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-almost asymmetry "shifted"
in-phase anti-phase
3D D

406) 20 (;) G2-invariant (E) 20 C/') 40

Fig. 14 Bifurcation diagram corresponding to the curve ! in
Fig. 13.

G,
ohy
G,
Ohl
0.7 s o 0.7

Fig. 15 Bifurcation diagram of in-phase and anti-phase solu-
tion.

1.56 -G,

1.49

€ —~

1.42 . ‘
-0.06 6 0 0.06

Fig. 16  Enlarged diagram of Fig. 15. In the shaded region
the asymmetrical solutions stably exist.

solution is one of the most important condition for ex-
isting a chaotic attractor.

Figure 18 shows a detailed bifurcation diagram of
Fig. 13. In the shaded region , there exist “almost
in-phase” 2-periodic solutions generated by period-
doubling bifurcation set Is of “shifted anti-phase” solu-
tion. By crossing the L, two “shifted anti-phase” solu-
tions bifurcate to one anti-phase solution after separa-
trix loops.

In Fig. 19 we summarize the results obtained from
calculating the bifurcation sets of equilibrium points
and periodic solutions in Egs. (7).

5. Conclusions

We investigated bifurcations of equilibrium points and
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(a) (21,%1) plane. (b) (r1,72) plane.

Fig. 17 Chaotic attractor. o = 1.546, § = 0.05.

01 0 0.1
o

Fig. 18 Bifurcation diagram of “shifted anti-phase” solution
created by Hopf bifurcation set ohs. The curve L denotes a global
bifurcation set.

Fig. 19 Possible symmetry-breaking bifurcations observed in
Eq.(7). Small squares represent (r1,72) phase plane. Heavy
and light solid lines indicate Hopf bifurcation and D-type of
branching, respectively. The dotted lines I and the dashed lines
L indicates period-doubling bifurcations and global bifurcations,
respectively.

periodic solutions observed in a resistively coupled os-
cillator with voltage ports. Firstly we classified theo-
retically all equilibrium points and periodic solutions
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according to their symmetrical properties. Eight types
of periodic solutions including in-phase and anti-phase
solutions | 14] were shown. Secondly by calculating bi-
furcation sets numerically we demonstrated the exis-
tence of the equilibrium points and the periodic so-
lutions which we classified. Lastly we showed tran-
sitions of solutions between different types of symme-
tries by symmetry-breaking bifurcation. Moreover we
found chaotic oscillation created by successive period-
doubling bifurcations. As far as we know, this is the
first observation of chaotic oscillation in such a simple
coupled oscillators system.

Extension to large number of oscillators and calcu-
lation of global bifurcation sets are interesting problems
for the future.
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