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PAPER

Synchronized States Observed in Coupled Four Oscillators

Hiroyuki KITAJIMA†a), Hiroshi KAWAKAMI††, and Tetsuo HATTORI†, Members

SUMMARY In this paper, we examine oscillatory modes generated by
the Hopf bifurcations of equilibrium points except for the origin in a sys-
tem of coupled four oscillators. (The bifurcation analyses of the origin for
many coupled oscillators were already done.) The Hopf bifurcations of
the equilibrium points with strong symmetrical property and the generated
oscillatory modes are classified. We observe four-phase, in-phase and a
pair of anti-phase synchronized states. Even in a system of four coupled
oscillators, we discover the existence of a stable three-phase oscillation.
By the numerical bifurcation analysis of generated periodic oscillations we
find out successive period-doubling bifurcations as the route to chaos and
show some of them are symmetry-breaking bifurcations. As a result of the
symmetry-breaking period-doubling bifurcations, a periodic solution with
complete synchronization becomes a chaotic solution with phase synchro-
nization.
key words: coupled oscillator, bifurcation, phase synchronization, symme-
try

1. Introduction

Systems of coupled oscillators are widely used as models
of biological rhythmic oscillations such as human circa-
dian rhythms [1], [2], finger movements [3], animal loco-
motion [4], swarms of fireflies that flash in synchrony, syn-
chronous firing of cardiac pacemaker cells [5], [6], and so
on. Using these coupled oscillator models, many investi-
gators have studied the mechanism of generation of syn-
chronous oscillations and phase transitions between distinct
oscillatory modes. From the standpoint of the bifurcation,
the former and the latter correspond to the Hopf bifurca-
tion of an equilibrium point (or the tangent bifurcation of
a periodic solution) and the pitch-fork bifurcation (or the
period-doubling bifurcation) of a periodic solution, respec-
tively. Using group theoretic discussion applied to the cou-
pled oscillators, we can derive some general theorems con-
cerning with the bifurcations of equilibrium points and pe-
riodic solutions [7].

In the study of the coupled oscillator system, the four-
coupled oscillator system is one of the most interesting sys-
tem, because there exists an irregular degenerate oscillatory
mode (or an independent pair of anti-phase mode) [8], [9]
when the equation of the single oscillator is invariant under

Manuscript received July 14, 2004.
Manuscript revised October 27, 2004.
Final manuscript received November 26, 2004.
†The authors are with the Faculty of Engineering, Kagawa Uni-

versity, Takamatsu-shi, 761-0396 Japan.
††The author is with the Faculty of Engineering, Tokushima

University, Tokushima-shi, 770-8506 Japan.
a) E-mail: kitaji@eng.kagawa-u.ac.jp

DOI: 10.1093/ietfec/e88–a.3.712

inversion of state variables. Mishima and Kawakami studied
the oscillatory modes generated by the Hopf bifurcations of
the origin (equilibrium point) in several systems of coupled
four BVP (Bonhöffer-van der Pol) oscillators [10]. How-
ever, they considered the Hopf bifurcation of the origin, be-
cause it is only supercritical. Tsumoto et al. investigated
bifurcations of the Modified BVP (MBVP) equation [11].
In the MVBP system, the supercritical Hopf bifurcation of
non-origin equilibrium points occurs.

In this paper, we examine the oscillatory modes gen-
erated by the Hopf bifurcations of non-origin equilibrium
points in the four-coupled oscillator system. The Hopf bi-
furcations of the equilibrium points with strong symmetri-
cal property and the generated oscillatory modes are clas-
sified. We observe four-phase, in-phase and a pair of anti-
phase synchronized states. Even in a system of four cou-
pled oscillators, a stable three-phase oscillation is also ob-
served. By the numerical bifurcation analysis of generated
periodic oscillations we find out successive period-doubling
bifurcations as the route to chaos and show some of them
are symmetry-breaking bifurcations. As a result of the
symmetry-breaking period-doubling bifurcations, a periodic
solution with complete synchronization becomes a chaotic
solution with phase synchronization.

This paper is organized as follows. In Sect. 2, circuit
equations are shown. In Sect. 3, we present the results of
our study; classification of synchronized states and their bi-
furcations. Finally, in Sect. 4 we summarize our results as
conclusion.

2. Circuit Equations

We consider the system of coupled four MBVP oscillators
shown in Fig. 1. The four oscillators are globally coupled by
resistors, because it is the simplest way to obtain many sta-
ble synchronized states. The circuit equations are described

(a) (b)

Fig. 1 (a) MBVP circuit and (b) coupled system.
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as

L1
dik1

dt
= −R1ik1 − vk

L2
dik2

dt
= −R1ik2 − vk (1)

C
dvk
dt
= ik1 + ik2 − g(vk)

−G(3vk − vk+1 − vk−1 − vk+2)

(k = 1, · · · , 4, v0 ≡ v4, v5 ≡ v1, v6 ≡ v2),

where the nonlinear conductance g(vk) is assumed to be

g(vk) = −vk + 1
3
v3k . (2)

The values of system parameters are fixed as [11]

L−1
1 = 0.2, R1 = 4.0, R2 = 2.1, C−1 = 3.0 (3)

for the occurrence of the supercritical Hopf bifurcation of
non-origin equilibrium points.

The Jacobi matrix of Eq. (1) is described by

DF =




X0 X1 X1 X1

X1 X0 X1 X1

X1 X1 X0 X1

X1 X1 X1 X0



. (4)

Each block is given by

X0 =




−R1L−1
1 0 −L−1

1
0 −R2L−1

2 −L−1
2

C−1 C−1 C−1(1 − v2∗k) − 3d



,

X1 =




0 0 0
0 0 0
0 0 d




(5)

where v∗k is an equilibrium point and d = C−1G. Using
orthogonal matrix given by

Q =
1√
2




1/
√

2I I O 1/
√

2I
1/
√

2I O I −1/
√

2I
1/
√

2I −I O 1/
√

2I
1/
√

2I O −I −1/
√

2I




(6)

where I is 3 × 3 identity matrix and O is 3 × 3 zero matrix,
we diagonalize the Jacobian matrix (4) as

Q−1 · DF · Q =




Y0 O O O
O Y1 O O
O O Y1 O
O O O Y1




(7)

where

Y0 = X0 + 3X1, (8)

Y1 = X0 − X1. (9)

In the next section we classify the oscillatory modes gener-
ated by the Hopf bifurcation in each block Yl (l = 0, 1) in
Eq. (7).

3. Results

In the single MBVP oscillator two equilibrium points a and
−a have the supercritical Hopf bifurcation. Considering the
coupled system described by Eq. (1), the equilibrium points
with the supercritical Hopf bifurcation are the combination
of the two equilibrium points a and −a; those are (v∗1, v∗2,
v∗3, v∗4) = (a, a, a, a), (a, a, −a, −a) and (a, a, a, −a). When
G � 0 the last type cannot exist, thus we use the notation
(a3, a3, a3, b) (b � −a3).

In the next subsection we show Hopf bifurcations of
above three types of equilibrium points and classify gener-
ated oscillatory patterns.

3.1 (a1, a1, a1, a1) type

In Fig. 2 we show Hopf bifurcation sets in the parameter
plane (d, L−1

2 ). The stable equilibrium point is observed in
the shaded regions. By changing the value of the parame-
ter L−1

2 from the stable regions and crossing the Hopf bifur-
cations of Y0, then an in-phase oscillation occurs. On the
other hand a four-phase oscillation is generated by passing
through the Hopf bifurcation of Y1, see Fig. 3. Note that in
waveforms shown in hereafter, there is no correspondence

Fig. 2 Hopf bifurcations of block Y0 and Y1 for (a1, a1, a1, a1) type equi-
librium point. Closed circles indicate codimension-two bifurcation points
called Hopf-Hopf bifurcation [12].

Fig. 3 Waveforms of a four-phase synchronized state in Eq. (1) with
L−1

2 = 0.035 and d = −0.01.
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Fig. 4 Waveforms of a four-phase quasi-periodic solution in Eq. (1) with
L−1

2 = 0.035 and d = −0.017.

Fig. 5 Hopf bifurcations of block Y0 and Y1 for (a2, a2, −a2, −a2) type.

between the kinds of curved line and the order of oscilla-
tors denoted by k, because the oscillators are fully connected
and we can exchange any oscillators. This four-phase solu-
tion meets the Neimark-Sacker bifurcation and a four-phase
quasi- periodic solution appears as shown in Fig. 4.

3.2 (a2, a2, −a2, −a2) type

We show a bifurcation diagram for (a2, a2, −a2, −a2)
type equilibrium point in Fig. 5. Hopf bifurcations of Y0

and Y1 generate a pair of in-phase and a pair of anti-
phase oscillations shown in Figs. 6 and 7, respectively. The
one-parameter bifurcation diagram for the in-phase solu-
tion (Fig. 8) represents the occurrence of successive period-
doubling bifurcations by changing the value of the param-
eter L−1

2 . At L−1
2 = 0.059, 0.060 and 0.061 we observe

the two-periodic (Fig. 9), the four-periodic (Fig. 10) and the
chaotic oscillation (Fig. 11), respectively.

The first period-doubling bifurcation is called
symmetry-breaking bifurcation because the waveforms of
the generated two-periodic solution are slightly different,
see Fig. 9(a). However the waveforms of Fig. 9(b) are the
same, because this symmetry (i31 = i41) is not broken. By
the next period-doubling bifurcation the symmetry (i31 =

i41) is broken, see Fig. 10(b). Note that the waveforms of

Fig. 6 Waveforms of a pair of in-phase oscillations in Eq. (1) with L−1
2 =

0.058 and d = −0.0001.

Fig. 7 Waveforms of a pair of anti-phase synchronized states in Eq. (1)
with L−1

2 = 0.048 and d = −0.0016.

Fig. 8 One-parameter bifurcation diagram of a pair of anti-phase oscil-
lations in Eq. (1) with d = −0.0001.

Fig. 9 Waveforms of two-periodic solution generated by period-
doubling bifurcation of Fig. 6 in Eq. (1) with L−1

2 = 0.059 and d = −0.0001.

Fig. 10 Waveforms of four-periodic solution generated by period-
doubling bifurcation of Fig. 9 in Eq. (1) with L−1

2 = 0.060 and d = −0.0001.

Fig. 10(a) are different, because this symmetry (i11 = i21) is
already broken by the first period-doubling bifurcation. Af-
ter successive period-doubling bifurcations, chaotic oscilla-
tion shown in Fig. 11 appears. From this figure we can see
that the complete synchronization is broken, however the
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Fig. 11 Waveforms of chaotic oscillation in Eq. (1) with L−1
2 = 0.061

and d = −0.0001.

Fig. 12 Switching phenomenon of chaotic oscillation in Eq. (1) with
L−1

2 = 0.062 and d = −0.0001.

Fig. 13 Hopf bifurcation sets of (a3, a3, a3, b) type in Eq. (1).

phase synchronization [13] is kept.
Moreover, by increasing the value of the parameter L−1

2 ,
the switching phenomenon of this chaotic oscillation is ob-
served as shown in Fig. 12. The switch occurs for two or
four oscillators simultaneously, thus always the currents ik1

of two oscillators are positive and those of the others are
negative. We suppose that this phenomenon may correlate
to global structure of stable and unstable manifolds of a sad-
dle type periodic solution embedded in the chaotic attractor.
Detailed analysis is one of our future problems.

3.3 (a3, a3, a3, b) type

Figure 13 shows Hopf bifurcation sets of (a3, a3, a3, b)
type equilibrium point. By the Hopf bifurcation denoted
by h1, oscillation of Fig. 14 is generated. From this fig-

Fig. 14 Waveforms of a 3-phase synchronized state in Eq. (1) with L−1
2 =

0.06 and d = −0.0016.

Fig. 15 Waveforms in Eq. (1) with L−1
2 = 0.04 and d = −0.0015.

Fig. 16 Waveforms of an in-phase synchronized state caused by the Hopf
bifurcation of (a3, a3, a3, b) in Eq. (1) with L−1

2 = 0.0711 and d = −0.0033.

Fig. 17 Waveforms of an in-phase synchronized state caused by the Hopf
bifurcation of (a3, a3, a3, b) in Eq. (1) with L−1

2 = 0.038 and d = 0.0005.

ure we can see that three oscillators synchronized at three-
phase (Fig. 14(a)) and the other oscillation is almost stopped
(Fig. 14(b)). The reason why we can observe the almost stop
phenomenon is that the sum of three oscillatory waves is al-
most constant. By changing the values of parameters L−1

2
and d, the three-phase oscillation meets the Neimark-Sacker
bifurcations, and the three-phase quasi-periodic solution ap-
pears as shown in Fig. 15. This result agrees with the result
of Kuznetsov [12]; near the Hopf-Hopf bifurcation there ex-
ists a resonant solution.

On the other hand, by the Hopf bifurcation denoted by
h2 and h3, in-phase oscillations of three oscillators shown in
Figs. 16 and 17 appear, respectively. In these figures the am-
plitude of in-phase oscillations of three oscillators is differ-
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Fig. 18 One-parameter bifurcation diagram of the in-phase solution in
Eq. (1) with d = −0.0033.

Fig. 19 Waveforms of an in-phase synchronized state in Eq. (1) with
L−1

2 = 0.0716 and d = −0.0033.

Table 1 Classification of oscillatory modes.

equilibrium point oscillatory modes

(a1, a1, a1, a1) 4-phase, in-phase(1)
(a2, a2, −a2, −a2) a pair of anti-phase, a pair of in-phase

(a3, a3, a3, b) 3-phase, a pair of in-phase

ent; large (Fig. 16(b)) and small (Fig. 17(a)). The in-phase
oscillation shown in Fig. 16 is unstable after passing through
h2, but by the Neimark-Sacker bifurcation it becomes sta-
ble. By changing the value of the parameter L−1

2 succes-
sive period-doubling bifurcations of this in-phase solution
shown in Fig. 18 are observed. By the first period-doubling
bifurcation, the waveform of one oscillator becomes differ-
ent (Fig. 19(b)) and in-phase synchronization of three oscil-
lators is broken. However, this symmetry (in-phase of two
oscillators) is kept by the other successive period-doubling
bifurcations, thus chaotic oscillation with this symmetry is
generated.

3.4 Summary

In Table 1 we classify oscillatory modes generated by the
Hopf bifurcations of three types of equilibrium points. For
each equilibrium point, the in-phase solution is generated
by the Hopf bifurcation in the block Y0 in Eq. (7). On the
other hand, the Hopf bifurcations in the blocks Y1 are de-
generate (three pairs of eigenvalues satisfy the condition of
the Hopf bifurcation). Thus many oscillatory modes (stable
and unstable) appear simultaneously by the degenerate Hopf
bifurcation.

We illustrate an interesting oscillatory mode generated
by the degenerate Hopf bifurcation in Fig. 20. In this fig-
ure the oscillations of two oscillators are completely stopped
and the others are synchronized at anti-phase. The sum of

Fig. 20 Waveforms of oscillation death (unstable) in Eq. (1) with L−1
2 =

0.06 and d = −0.0023.

two oscillatory waves is zero, thus the others can be equilib-
rium states.

4. Conclusion

We have studied the oscillatory modes generated by the
Hopf bifurcations in coupled four oscillators. The Hopf bi-
furcations of three types of equilibrium points and the gen-
erated oscillatory modes are classified. Moreover, by nu-
merical bifurcation analysis we observed various interesting
synchronized states caused by the degenerate Hopf bifurca-
tions. Considering the associative memory model for stor-
ing patterns as oscillatory states [14], this system has the
advantage of many oscillatory modes.
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