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Abstract — We investigate synchronous chaotic fir-
ing observed in synaptically coupled BVP neurons
with external impulsive forces. The effect of chang-
ing time delays for both inhibitory and excitatory
coupling neurons is studied. We show that only
excitatory coupling neurons produce synchronous
chaotic firing patterns for a small delay. By increas-
ing a delay both two types of coupling neurons gen-
erate asynchronous chaotic firing patterns.

1 INTRODUCTION

Synchronization of neurons has attracted much in-
terest in relation to information processing in the
brain. It is well known that some neurons show
chaotic or irregular activities, thus chaotic synchro-
nization is one of the most important topics to un-
derstand neural networks (see [1-3] and references
therein). Considering a system of coupled neurons
the effect of a time delay have become a subject
of intense research activities [4-6]. Vreeswijk et
al. 7] studied the effect of changing a time delay
and showed that inhibitory connection synchronizes
periodic neural firing for a large delay.

In this paper we examine synchronization of
chaotic neural firing observed in synaptically cou-
pled Bonhéffer van der Pol (BVP or FitzHugh-
Nagumo) neurons with external impulsive forces.
The effect of changing time delays for both in-
hibitory and excitatory coupling neurons is studied.
We show that only excitatory coupling neurons pro-
duce synchronous chaotic firing patterns for a small
delay. By increasing a delay both two types of cou-
pling neurons generate asynchronous chaotic firing
patterns.
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2 SYSTEM EQUATION

2.1 BVP Neuron with Impulse

The BVP or FitzHugh-Nagumo equation is a well-
known neuron model representing the electrical
behavior across a nerve membrane and has been
widely studied [8-12]. The equation of the single
BVP neuron with the external impulsive force is
described as
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where §(t) is the Dirac’s delta function and, h and
w are the amplitude and the angular frequency of
the impulsive force, respectively. The system pa-
rameters are fixed as

a=07 b6=08, c=30 (2)

for the occurrence of a stable equilibrium point in
the system of Eq. (1).

2.2 Coupled BVP Neurons with Impulse

The equation of synaptically coupled BVP neurons
is written as
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where the coupling term z; is
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and «; is given as the solution of these equations
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Note that the solution «;(t) of Eq. (5) with ini-
tial condition (e, B;) = (0, 1) at ¢ = 0 is cal-
culated as a;(t) = (t/7)exp~¥/7 called a-function
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(see [8,13] and the references cited therein). In
Eq. (4) & represents the synaptic reversal poten-
tial, which depends on the type of synaptic trans-
mitter released from a presynaptic neuron and their
receptors. The coupling becomes excitatory and in-
hibitory with & > zeq and & < xeq, respectively,
where zeq denotes an equilibrium potential of the
single BVP neuron (zeq ~ —1.2 for parameter set-
ting in Eq. (2)) .

We assume that a firing of the membrane poten-
tial of the BVP neuron occurs when the state vari-
ables x; crosses zero as a threshold value, changing
its sign from negative to positive. Each vector («;,
B;) jumps to the constant (0, 1) at t = to+74 where
to is the time when x; changes to x; > 0. Namely,
the firing information of a neuron transforms to the
other neuron with the time delay 7,.

3 NUMERICAL RESULTS

The values of parameters of synaptic characteristics
are fixed as
(6)

Figure 1 shows waveforms of chaotic solutions ob-
served in Eq. (3) with & = —0.3 (excitatory cou-
pling) and & = —1.5 (inhibitory coupling). In Fig. 2
we show approximate firing rates r(t) of Fig. 1 cal-
culated using the following equation [14]

=20, d=1.0.

n

r(t) = w(t—t;)

j=1

(j:L 2, 7”) (7)

where t; is the time when the n spikes occurred,
and w(t) is a Gaussian window function described

» 1 t2
wlt) = = exp (—;) ®)

with ¢ = 200. From Fig. 2 we can see that the
chaotic firing trains of excitatory coupling neurons
are synchronized at in-phase, while inhibitory cou-
pling neurons produce almost anti-phase synchro-
nized states.

The bifurcation mechanism of generation of such
chaotic firing is shown in Fig. 3. When the value
of the amplitude h of impulsive forces is less than
0.6145, two neurons never fire, thus neurons are
not connected synaptically. At the point marked
by @, the saddle-node bifurcation of a one-periodic
point occur and stable two-periodic points appear.
This two-periodic points meet successive period-
doubling bifurcations around h = 0.612 marked by
® and chaotic solution is generated. Increasing the
value of h, two neurons start to fire and be synapti-
cally connected each other at the point marked by

®.
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Figure 1: Waveforms of chaotic oscillations in
Eq. (3) with w = 1.5, h = 0.6148 and 74 = 1.5.

Next we show the results of increasing the time
delay 74 for both of inhibitory and excitatory cou-
pling system. Figure 4 and 5 represent, respec-
tively, the waveforms and their firing rates in
Eq. (3) with 74 = 3.5. In the excitatory coupling
system, when the time delay is small, two neurons
produce synchronous firing. However, by increas-
ing the time delay synchronization of firing pattern
of two neurons is broken. On the other hand in in-
hibitory coupling system, asynchronous firing pat-
tern is kept against increasing the time delay.

We define that if the time difference of firing
rate’s peak of two neurons are within 100 then
two neurons produce synchronous firing. In Fig. 6
we show the results of counting synchronous fir-
ing for both excitatory and inhibitory coupling sys-
tem by changing the values of the time delay. In-
hibitory coupling neurons always generate asyn-
chronous chaotic firing pattern for increasing the
time delay. On the other hand synchronous chaotic
firing pattern of excitatory coupling neurons be-
comes asynchronous over delay = 2.5.

4 CONCLUSIONS

In this paper we have examined synchronization of
chaotic neural firing observed in synaptically cou-
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Eq. (3) with w = 1.5, h = 0.6148 and 74 = 3.5.
Figure 2: Firing rates. 74 = 1.5.
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Figure 5: Firing rates. 74 = 3.5.
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Figure 6: Number of synchronous firing.

pled Bonhoffer van der Pol (BVP or FitzHugh-
Nagumo) neurons with external impulsive forces.
The effect of changing time delays for both in-
hibitory and excitatory coupling neurons is studied.
We showed that only excitatory coupling neurons
produce synchronous chaotic firing patterns for a
small delay. By increasing a delay both two types
of coupling neurons generate asynchronous chaotic
firing patterns.

This result is different from the periodic firing
case [7]. Thus, it is interesting open problems to
study the mechanisms of generating synchronous
chaotic firing.
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